📄 fd.m
字号:
function fd = fD(X, D, A, N, d)
% ---------------------------------------------------------------------------
% the value of dissimilarity constraint function
% f = f(\sum_{ij \in D} distance(x_i, x_j))
% i.e. distance can be L1: \sqrt{(x_i-x_j)A(x_i-x_j)'}) ...
% f(x) = x ...
% ---------------------------------------------------------------------------
fd = 0.000001;
for i = 1:N
for j= i+1:N
if D(i,j) == 1,
d_ij = X(i,:) - X(j,:);
distij = distance1(A, d_ij); % distance between 'i' and 'j'
fd = fd + distij; % constraint defined on disimilar set
end
end
end
fd = gF2(fd);
% ___________L1 norm______________
function kd = distance1(A, d_ij)
kd = (d_ij * A * d_ij')^(1/2);
% ___________sqrt(L1 norm)___________
function kd = distance2(A, d_ij)
kd = (d_ij * A * d_ij')^(1/4);
% ___________1-exp(-beta*L1)_________
function kd = distance3(A, d_ij)
beta = 0.5;
kd = 1 - exp(-beta*(sqrt(d_ij * A * d_ij')));
% ___________cover function 1_________
function x = gF1(x1)
x = x1;
% ___________cover function 1_________
function x = gF2(x1)
x = log(x1);
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -