⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 classifierpanel.java

📁 wekaUT是 university texas austin 开发的基于weka的半指导学习(semi supervised learning)的分类器
💻 JAVA
📖 第 1 页 / 共 5 页
字号:
/* *    This program is free software; you can redistribute it and/or modify *    it under the terms of the GNU General Public License as published by *    the Free Software Foundation; either version 2 of the License, or *    (at your option) any later version. * *    This program is distributed in the hope that it will be useful, *    but WITHOUT ANY WARRANTY; without even the implied warranty of *    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the *    GNU General Public License for more details. * *    You should have received a copy of the GNU General Public License *    along with this program; if not, write to the Free Software *    Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. *//* *    ClassifierPanel.java *    Copyright (C) 1999 Len Trigg * */package weka.gui.explorer;import weka.core.Instances;import weka.core.Instance;import weka.core.FastVector;import weka.core.OptionHandler;import weka.core.Attribute;import weka.core.Utils;import weka.core.Drawable;import weka.core.SerializedObject;import weka.classifiers.Classifier;import weka.classifiers.DistributionClassifier;import weka.classifiers.Evaluation;import weka.classifiers.CostMatrix;import weka.classifiers.evaluation.NominalPrediction;import weka.classifiers.evaluation.MarginCurve;import weka.classifiers.evaluation.ThresholdCurve;import weka.classifiers.evaluation.CostCurve;import weka.filters.Filter;import weka.gui.Logger;import weka.gui.TaskLogger;import weka.gui.SysErrLog;import weka.gui.GenericObjectEditor;import weka.gui.PropertyPanel;import weka.gui.ResultHistoryPanel;import weka.gui.SetInstancesPanel;import weka.gui.CostMatrixEditor;import weka.gui.PropertyDialog;import weka.gui.InstancesSummaryPanel;import weka.gui.SaveBuffer;import weka.gui.visualize.VisualizePanel;import weka.gui.visualize.PlotData2D;import weka.gui.visualize.Plot2D;import weka.gui.ExtensionFileFilter;import weka.gui.treevisualizer.*;import java.util.Random;import java.util.Date;import java.text.SimpleDateFormat;import java.awt.FlowLayout;import java.awt.BorderLayout;import java.awt.GridLayout;import java.awt.GridBagLayout;import java.awt.GridBagConstraints;import java.awt.Insets;import java.awt.Font;import java.awt.Point;import java.awt.event.ActionListener;import java.awt.event.ActionEvent;import java.awt.event.InputEvent;import java.awt.event.MouseAdapter;import java.awt.event.MouseEvent;import java.awt.Window;import java.awt.Dimension;import java.beans.PropertyChangeListener;import java.beans.PropertyChangeEvent;import java.beans.PropertyChangeSupport;import java.io.File;import java.io.FileWriter;import java.io.Writer;import java.io.BufferedWriter;import java.io.PrintWriter;import java.io.OutputStream;import java.io.ObjectOutputStream;import java.io.FileOutputStream;import java.util.zip.GZIPOutputStream;import java.io.InputStream;import java.io.ObjectInputStream;import java.io.FileInputStream;import java.util.zip.GZIPInputStream;import javax.swing.JFileChooser;import javax.swing.JPanel;import javax.swing.JLabel;import javax.swing.JButton;import javax.swing.BorderFactory;import javax.swing.JTextArea;import javax.swing.JScrollPane;import javax.swing.JRadioButton;import javax.swing.ButtonGroup;import javax.swing.JOptionPane;import javax.swing.JComboBox;import javax.swing.DefaultComboBoxModel;import javax.swing.JTextField;import javax.swing.SwingConstants;import javax.swing.JFrame;import javax.swing.event.ChangeListener;import javax.swing.event.ChangeEvent;import javax.swing.JViewport;import javax.swing.JCheckBox;import javax.swing.ListSelectionModel;import javax.swing.event.ListSelectionEvent;import javax.swing.event.ListSelectionListener;import javax.swing.JPopupMenu;import javax.swing.JMenu;import javax.swing.JMenuItem;import javax.swing.filechooser.FileFilter;/**  * This panel allows the user to select and configure a classifier, set the * attribute of the current dataset to be used as the class, and evaluate * the classifier using a number of testing modes (test on the training data, * train/test on a percentage split, n-fold cross-validation, test on a * separate split). The results of classification runs are stored in a result * history so that previous results are accessible. * * @author Len Trigg (trigg@cs.waikato.ac.nz) * @author Mark Hall (mhall@cs.waikato.ac.nz) * @author Richard Kirkby (rkirkby@cs.waikato.ac.nz) * @version $Revision: 1.1.1.1 $ */public class ClassifierPanel extends JPanel {  /** Lets the user configure the classifier */  protected GenericObjectEditor m_ClassifierEditor =    new GenericObjectEditor();  /** The panel showing the current classifier selection */  protected PropertyPanel m_CEPanel = new PropertyPanel(m_ClassifierEditor);    /** The output area for classification results */  protected JTextArea m_OutText = new JTextArea(20, 40);  /** The destination for log/status messages */  protected Logger m_Log = new SysErrLog();  /** The buffer saving object for saving output */  SaveBuffer m_SaveOut = new SaveBuffer(m_Log, this);  /** A panel controlling results viewing */  protected ResultHistoryPanel m_History = new ResultHistoryPanel(m_OutText);  /** Lets the user select the class column */  protected JComboBox m_ClassCombo = new JComboBox();  /** Click to set test mode to cross-validation */  protected JRadioButton m_CVBut = new JRadioButton("Cross-validation");  /** Click to set test mode to generate a % split */  protected JRadioButton m_PercentBut = new JRadioButton("Percentage split");  /** Click to set test mode to test on training data */  protected JRadioButton m_TrainBut = new JRadioButton("Use training set");  /** Click to set test mode to a user-specified test set */  protected JRadioButton m_TestSplitBut =    new JRadioButton("Supplied test set");  /** Check to save the predictions in the results list for visualizing      later on */  protected JCheckBox m_StorePredictionsBut =     new JCheckBox("Store predictions for visualization");  /** Check to output the model built from the training data */  protected JCheckBox m_OutputModelBut = new JCheckBox("Output model");  /** Check to output true/false positives, precision/recall for each class */  protected JCheckBox m_OutputPerClassBut =    new JCheckBox("Output per-class stats");  /** Check to output a confusion matrix */  protected JCheckBox m_OutputConfusionBut =    new JCheckBox("Output confusion matrix");  /** Check to output entropy statistics */  protected JCheckBox m_OutputEntropyBut =    new JCheckBox("Output entropy evaluation measures");  /** Check to output text predictions */  protected JCheckBox m_OutputPredictionsTextBut =    new JCheckBox("Output text predictions on test set");  /** Check to evaluate w.r.t a cost matrix */  protected JCheckBox m_EvalWRTCostsBut =    new JCheckBox("Cost-sensitive evaluation");  protected JButton m_SetCostsBut = new JButton("Set...");  /** Label by where the cv folds are entered */  protected JLabel m_CVLab = new JLabel("Folds", SwingConstants.RIGHT);  /** The field where the cv folds are entered */  protected JTextField m_CVText = new JTextField("10");  /** Label by where the % split is entered */  protected JLabel m_PercentLab = new JLabel("%", SwingConstants.RIGHT);  /** The field where the % split is entered */  protected JTextField m_PercentText = new JTextField("66");  /** The button used to open a separate test dataset */  protected JButton m_SetTestBut = new JButton("Set...");  /** The frame used to show the test set selection panel */  protected JFrame m_SetTestFrame;  /** The frame used to show the cost matrix editing panel */  protected PropertyDialog m_SetCostsFrame;  /**   * Alters the enabled/disabled status of elements associated with each   * radio button   */  ActionListener m_RadioListener = new ActionListener() {    public void actionPerformed(ActionEvent e) {      updateRadioLinks();    }  };  /** Button for further output/visualize options */  JButton m_MoreOptions = new JButton("More options...");  /**   * User specified random seed for cross validation or % split   */  protected JTextField m_RandomSeedText = new JTextField("1      ");  protected JLabel m_RandomLab = new JLabel("Random seed for XVal / % Split", 					    SwingConstants.RIGHT);  /** Click to start running the classifier */  protected JButton m_StartBut = new JButton("Start");  /** Click to stop a running classifier */  protected JButton m_StopBut = new JButton("Stop");  /** Stop the class combo from taking up to much space */  private Dimension COMBO_SIZE = new Dimension(150, m_StartBut					       .getPreferredSize().height);  /** The cost matrix editor for evaluation costs */  protected CostMatrixEditor m_CostMatrixEditor = new CostMatrixEditor();  /** The main set of instances we're playing with */  protected Instances m_Instances;  /** The user-supplied test set (if any) */  protected Instances m_TestInstances;  /** The user supplied test set after preprocess filters have been applied */  protected Instances m_TestInstancesCopy;    /** A thread that classification runs in */  protected Thread m_RunThread;  /** default x index for visualizing */  protected int m_visXIndex;    /** default y index for visualizing */  protected int m_visYIndex;  /** The current visualization object */  protected VisualizePanel m_CurrentVis = null;  /** The instances summary panel displayed by m_SetTestFrame */  protected InstancesSummaryPanel m_Summary = null;  /** Filter to ensure only model files are selected */    protected FileFilter m_ModelFilter =    new ExtensionFileFilter("model", "Model object files");  /** The file chooser for selecting model files */  protected JFileChooser m_FileChooser     = new JFileChooser(new File(System.getProperty("user.dir")));  /* Register the property editors we need */  static {    java.beans.PropertyEditorManager      .registerEditor(weka.core.SelectedTag.class,		      weka.gui.SelectedTagEditor.class);    java.beans.PropertyEditorManager      .registerEditor(weka.filters.Filter.class,		      weka.gui.GenericObjectEditor.class);    java.beans.PropertyEditorManager      .registerEditor(weka.classifiers.Classifier [].class,		      weka.gui.GenericArrayEditor.class);    java.beans.PropertyEditorManager      .registerEditor(weka.classifiers.DistributionClassifier.class,		      weka.gui.GenericObjectEditor.class);    java.beans.PropertyEditorManager      .registerEditor(weka.classifiers.Classifier.class,		      weka.gui.GenericObjectEditor.class);    java.beans.PropertyEditorManager      .registerEditor(weka.classifiers.CostMatrix.class,		      weka.gui.CostMatrixEditor.class);  }    /**   * Creates the classifier panel   */  public ClassifierPanel() {    // Connect / configure the components    m_OutText.setEditable(false);    m_OutText.setFont(new Font("Monospaced", Font.PLAIN, 12));    m_OutText.setBorder(BorderFactory.createEmptyBorder(5, 5, 5, 5));    m_OutText.addMouseListener(new MouseAdapter() {      public void mouseClicked(MouseEvent e) {	if ((e.getModifiers() & InputEvent.BUTTON1_MASK)	    != InputEvent.BUTTON1_MASK) {	  m_OutText.selectAll();	}      }    });    m_History.setBorder(BorderFactory.createTitledBorder("Result list (right-click for options)"));    m_ClassifierEditor.setClassType(Classifier.class);    m_ClassifierEditor.setValue(new weka.classifiers.rules.ZeroR());    m_ClassifierEditor.addPropertyChangeListener(new PropertyChangeListener() {      public void propertyChange(PropertyChangeEvent e) {	repaint();      }    });    m_ClassCombo.setToolTipText("Select the attribute to use as the class");    m_TrainBut.setToolTipText("Test on the same set that the classifier"			      + " is trained on");    m_CVBut.setToolTipText("Perform a n-fold cross-validation");    m_PercentBut.setToolTipText("Train on a percentage of the data and"				+ " test on the remainder");    m_TestSplitBut.setToolTipText("Test on a user-specified dataset");    m_StartBut.setToolTipText("Starts the classification");    m_StopBut.setToolTipText("Stops a running classification");    m_StorePredictionsBut.      setToolTipText("Store predictions in the result list for later "		     +"visualization");    m_OutputModelBut      .setToolTipText("Output the model obtained from the full training set");    m_OutputPerClassBut.setToolTipText("Output precision/recall & true/false"				    + " positives for each class");    m_OutputConfusionBut      .setToolTipText("Output the matrix displaying class confusions");    m_OutputEntropyBut      .setToolTipText("Output entropy-based evaluation measures");    m_EvalWRTCostsBut      .setToolTipText("Evaluate errors with respect to a cost matrix");    m_OutputPredictionsTextBut      .setToolTipText("Include the predictions on the test set in the output buffer");    m_FileChooser.setFileFilter(m_ModelFilter);    m_FileChooser.setFileSelectionMode(JFileChooser.FILES_ONLY);    m_StorePredictionsBut.setSelected(true);    m_OutputModelBut.setSelected(true);    m_OutputPerClassBut.setSelected(true);    m_OutputConfusionBut.setSelected(true);    m_ClassCombo.setEnabled(false);    m_ClassCombo.setPreferredSize(COMBO_SIZE);    m_ClassCombo.setMaximumSize(COMBO_SIZE);    m_ClassCombo.setMinimumSize(COMBO_SIZE);    m_CVBut.setSelected(true);    updateRadioLinks();    ButtonGroup bg = new ButtonGroup();    bg.add(m_TrainBut);    bg.add(m_CVBut);    bg.add(m_PercentBut);    bg.add(m_TestSplitBut);    m_TrainBut.addActionListener(m_RadioListener);    m_CVBut.addActionListener(m_RadioListener);    m_PercentBut.addActionListener(m_RadioListener);    m_TestSplitBut.addActionListener(m_RadioListener);    m_SetTestBut.addActionListener(new ActionListener() {      public void actionPerformed(ActionEvent e) {	setTestSet();      }

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -