📄 discretize.java
字号:
/* * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. *//* * Discretize.java * Copyright (C) 1999 Eibe Frank,Len Trigg * */package weka.filters.unsupervised.attribute;import weka.filters.*;import java.io.*;import java.util.*;import weka.core.*;/** * An instance filter that discretizes a range of numeric attributes in * the dataset into nominal attributes. Discretization is by simple binning.<p> * * Valid filter-specific options are: <p> * * -B num <br> * Specifies the (maximum) number of bins to divide numeric attributes into. * Default = 10.<p> * * -F <br> * Use equal-frequency instead of equal-width discretization if * class-based discretisation is turned off.<p> * * -O <br> * Optimize the number of bins using a leave-one-out estimate of the * entropy (for equal-width binning).<p> * * -R col1,col2-col4,... <br> * Specifies list of columns to Discretize. First * and last are valid indexes. (default: first-last) <p> * * -V <br> * Invert matching sense.<p> * * -D <br> * Make binary nominal attributes. <p> * * @author Len Trigg (trigg@cs.waikato.ac.nz) * @author Eibe Frank (eibe@cs.waikato.ac.nz) * @version $Revision: 1.1.1.1 $ */public class Discretize extends Filter implements UnsupervisedFilter, OptionHandler, WeightedInstancesHandler { /** Stores which columns to Discretize */ protected Range m_DiscretizeCols = new Range(); /** The number of bins to divide the attribute into */ protected int m_NumBins = 10; /** Store the current cutpoints */ protected double [][] m_CutPoints = null; /** Output binary attributes for discretized attributes. */ protected boolean m_MakeBinary = false; /** Find the number of bins using cross-validated entropy. */ protected boolean m_FindNumBins = false; /** Use equal-frequency binning if unsupervised discretization turned on */ protected boolean m_UseEqualFrequency = false; /** Constructor - initialises the filter */ public Discretize() { setAttributeIndices("first-last"); } /** * Gets an enumeration describing the available options. * * @return an enumeration of all the available options. */ public Enumeration listOptions() { Vector newVector = new Vector(7); newVector.addElement(new Option( "\tSpecifies the (maximum) number of bins to divide numeric" + " attributes into.\n" + "\t(default = 10)", "B", 1, "-B <num>")); newVector.addElement(new Option( "\tUse equal-frequency instead of equal-width discretization.", "F", 0, "-F")); newVector.addElement(new Option( "\tOptimize number of bins using leave-one-out estimate\n"+ "\tof estimated entropy (for equal-width discretization).", "O", 0, "-O")); newVector.addElement(new Option( "\tSpecifies list of columns to Discretize. First" + " and last are valid indexes.\n" + "\t(default: first-last)", "R", 1, "-R <col1,col2-col4,...>")); newVector.addElement(new Option( "\tInvert matching sense of column indexes.", "V", 0, "-V")); newVector.addElement(new Option( "\tOutput binary attributes for discretized attributes.", "D", 0, "-D")); return newVector.elements(); } /** * Parses the options for this object. Valid options are: <p> * * -B num <br> * Specifies the (maximum) number of bins to divide numeric attributes into. * Default = 10.<p> * * -F <br> * Use equal-frequency instead of equal-width discretization if * class-based discretisation is turned off.<p> * * -O <br> * Optimize the number of bins using a leave-one-out estimate of the * entropy (for equal-width binning).<p> * * -R col1,col2-col4,... <br> * Specifies list of columns to Discretize. First * and last are valid indexes. (default none) <p> * * -V <br> * Invert matching sense.<p> * * -D <br> * Make binary nominal attributes. <p> * * @param options the list of options as an array of strings * @exception Exception if an option is not supported */ public void setOptions(String[] options) throws Exception { setMakeBinary(Utils.getFlag('D', options)); setUseEqualFrequency(Utils.getFlag('F', options)); setFindNumBins(Utils.getFlag('O', options)); setInvertSelection(Utils.getFlag('V', options)); String numBins = Utils.getOption('B', options); if (numBins.length() != 0) { setBins(Integer.parseInt(numBins)); } else { setBins(10); } String convertList = Utils.getOption('R', options); if (convertList.length() != 0) { setAttributeIndices(convertList); } else { setAttributeIndices("first-last"); } if (getInputFormat() != null) { setInputFormat(getInputFormat()); } } /** * Gets the current settings of the filter. * * @return an array of strings suitable for passing to setOptions */ public String [] getOptions() { String [] options = new String [12]; int current = 0; if (getMakeBinary()) { options[current++] = "-D"; } if (getUseEqualFrequency()) { options[current++] = "-F"; } if (getFindNumBins()) { options[current++] = "-O"; } if (getInvertSelection()) { options[current++] = "-V"; } options[current++] = "-B"; options[current++] = "" + getBins(); if (!getAttributeIndices().equals("")) { options[current++] = "-R"; options[current++] = getAttributeIndices(); } while (current < options.length) { options[current++] = ""; } return options; } /** * Sets the format of the input instances. * * @param instanceInfo an Instances object containing the input instance * structure (any instances contained in the object are ignored - only the * structure is required). * @return true if the outputFormat may be collected immediately * @exception Exception if the input format can't be set successfully */ public boolean setInputFormat(Instances instanceInfo) throws Exception { super.setInputFormat(instanceInfo); m_DiscretizeCols.setUpper(instanceInfo.numAttributes() - 1); m_CutPoints = null; if (getFindNumBins() && getUseEqualFrequency()) { throw new IllegalArgumentException("Bin number optimization in conjunction "+ "with equal-frequency binning not implemented."); } // If we implement loading cutfiles, then load //them here and set the output format return false; } /** * Input an instance for filtering. Ordinarily the instance is processed * and made available for output immediately. Some filters require all * instances be read before producing output. * * @param instance the input instance * @return true if the filtered instance may now be * collected with output(). * @exception IllegalStateException if no input format has been defined. */ public boolean input(Instance instance) { if (getInputFormat() == null) { throw new IllegalStateException("No input instance format defined"); } if (m_NewBatch) { resetQueue(); m_NewBatch = false; } if (m_CutPoints != null) { convertInstance(instance); return true; } bufferInput(instance); return false; } /** * Signifies that this batch of input to the filter is finished. If the * filter requires all instances prior to filtering, output() may now * be called to retrieve the filtered instances. * * @return true if there are instances pending output * @exception IllegalStateException if no input structure has been defined */ public boolean batchFinished() { if (getInputFormat() == null) { throw new IllegalStateException("No input instance format defined"); } if (m_CutPoints == null) { calculateCutPoints(); setOutputFormat(); // If we implement saving cutfiles, save the cuts here // Convert pending input instances for(int i = 0; i < getInputFormat().numInstances(); i++) { convertInstance(getInputFormat().instance(i)); } } flushInput(); m_NewBatch = true; return (numPendingOutput() != 0); } /** * Returns a string describing this filter * * @return a description of the filter suitable for * displaying in the explorer/experimenter gui */ public String globalInfo() { return "An instance filter that discretizes a range of numeric" + " attributes in the dataset into nominal attributes." + " Discretization is by simple binning."; } /** * Returns the tip text for this property * * @return tip text for this property suitable for * displaying in the explorer/experimenter gui */ public String findNumBinsTipText() { return "Optimize number of equal-width bins using leave-one-out."; } /** * Get the value of FindNumBins. * * @return Value of FindNumBins. */ public boolean getFindNumBins() { return m_FindNumBins; } /** * Set the value of FindNumBins. * * @param newFindNumBins Value to assign to FindNumBins. */ public void setFindNumBins(boolean newFindNumBins) { m_FindNumBins = newFindNumBins; } /** * Returns the tip text for this property * * @return tip text for this property suitable for * displaying in the explorer/experimenter gui */ public String makeBinaryTipText() { return "Make resulting attributes binary."; } /** * Gets whether binary attributes should be made for discretized ones. * * @return true if attributes will be binarized */ public boolean getMakeBinary() { return m_MakeBinary; } /** * Sets whether binary attributes should be made for discretized ones. * * @param makeBinary if binary attributes are to be made */ public void setMakeBinary(boolean makeBinary) { m_MakeBinary = makeBinary; } /** * Get the value of UseEqualFrequency. * * @return Value of UseEqualFrequency. */ public boolean getUseEqualFrequency() { return m_UseEqualFrequency; } /** * Set the value of UseEqualFrequency. * * @param newUseEqualFrequency Value to assign to UseEqualFrequency. */ public void setUseEqualFrequency(boolean newUseEqualFrequency) { m_UseEqualFrequency = newUseEqualFrequency; } /** * Returns the tip text for this property * * @return tip text for this property suitable for * displaying in the explorer/experimenter gui */ public String binsTipText() { return "Number of bins."; } /** * Gets the number of bins numeric attributes will be divided into * * @return the number of bins. */ public int getBins() { return m_NumBins; } /** * Sets the number of bins to divide each selected numeric attribute into * * @param numBins the number of bins */ public void setBins(int numBins) { m_NumBins = numBins; } /** * Returns the tip text for this property * * @return tip text for this property suitable for * displaying in the explorer/experimenter gui */ public String invertSelectionTipText() { return "Set attribute selection mode. If false, only selected" + " (numeric) attributes in the range will be discretized; if" + " true, only non-selected attributes will be discretized."; }
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -