⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 discretize.java

📁 wekaUT是 university texas austin 开发的基于weka的半指导学习(semi supervised learning)的分类器
💻 JAVA
📖 第 1 页 / 共 2 页
字号:
/* *    This program is free software; you can redistribute it and/or modify *    it under the terms of the GNU General Public License as published by *    the Free Software Foundation; either version 2 of the License, or *    (at your option) any later version. * *    This program is distributed in the hope that it will be useful, *    but WITHOUT ANY WARRANTY; without even the implied warranty of *    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the *    GNU General Public License for more details. * *    You should have received a copy of the GNU General Public License *    along with this program; if not, write to the Free Software *    Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. *//* *    Discretize.java *    Copyright (C) 1999 Eibe Frank,Len Trigg * */package weka.filters.unsupervised.attribute;import weka.filters.*;import java.io.*;import java.util.*;import weka.core.*;/**  * An instance filter that discretizes a range of numeric attributes in  * the dataset into nominal attributes. Discretization is by simple binning.<p> * * Valid filter-specific options are: <p> * * -B num <br> * Specifies the (maximum) number of bins to divide numeric attributes into. * Default = 10.<p> * * -F <br> * Use equal-frequency instead of equal-width discretization if  * class-based discretisation is turned off.<p> * * -O <br> * Optimize the number of bins using a leave-one-out estimate of the  * entropy (for equal-width binning).<p> * * -R col1,col2-col4,... <br> * Specifies list of columns to Discretize. First * and last are valid indexes. (default: first-last) <p> * * -V <br> * Invert matching sense.<p> * * -D <br> * Make binary nominal attributes. <p> *  * @author Len Trigg (trigg@cs.waikato.ac.nz) * @author Eibe Frank (eibe@cs.waikato.ac.nz) * @version $Revision: 1.1.1.1 $ */public class Discretize extends Filter   implements UnsupervisedFilter, OptionHandler, WeightedInstancesHandler {  /** Stores which columns to Discretize */  protected Range m_DiscretizeCols = new Range();  /** The number of bins to divide the attribute into */  protected int m_NumBins = 10;  /** Store the current cutpoints */  protected double [][] m_CutPoints = null;  /** Output binary attributes for discretized attributes. */  protected boolean m_MakeBinary = false;  /** Find the number of bins using cross-validated entropy. */  protected boolean m_FindNumBins = false;  /** Use equal-frequency binning if unsupervised discretization turned on */  protected boolean m_UseEqualFrequency = false;  /** Constructor - initialises the filter */  public Discretize() {    setAttributeIndices("first-last");  }  /**   * Gets an enumeration describing the available options.   *   * @return an enumeration of all the available options.   */  public Enumeration listOptions() {    Vector newVector = new Vector(7);    newVector.addElement(new Option(              "\tSpecifies the (maximum) number of bins to divide numeric"	      + " attributes into.\n"	      + "\t(default = 10)",              "B", 1, "-B <num>"));    newVector.addElement(new Option(              "\tUse equal-frequency instead of equal-width discretization.",              "F", 0, "-F"));    newVector.addElement(new Option(              "\tOptimize number of bins using leave-one-out estimate\n"+	      "\tof estimated entropy (for equal-width discretization).",              "O", 0, "-O"));    newVector.addElement(new Option(              "\tSpecifies list of columns to Discretize. First"	      + " and last are valid indexes.\n"	      + "\t(default: first-last)",              "R", 1, "-R <col1,col2-col4,...>"));    newVector.addElement(new Option(              "\tInvert matching sense of column indexes.",              "V", 0, "-V"));    newVector.addElement(new Option(              "\tOutput binary attributes for discretized attributes.",              "D", 0, "-D"));    return newVector.elements();  }  /**   * Parses the options for this object. Valid options are: <p>   *   * -B num <br>   * Specifies the (maximum) number of bins to divide numeric attributes into.   * Default = 10.<p>   *   * -F <br>   * Use equal-frequency instead of equal-width discretization if    * class-based discretisation is turned off.<p>   *   * -O <br>   * Optimize the number of bins using a leave-one-out estimate of the    * entropy (for equal-width binning).<p>   *   * -R col1,col2-col4,... <br>   * Specifies list of columns to Discretize. First   * and last are valid indexes. (default none) <p>   *   * -V <br>   * Invert matching sense.<p>   *   * -D <br>   * Make binary nominal attributes. <p>   *    * @param options the list of options as an array of strings   * @exception Exception if an option is not supported   */  public void setOptions(String[] options) throws Exception {    setMakeBinary(Utils.getFlag('D', options));    setUseEqualFrequency(Utils.getFlag('F', options));    setFindNumBins(Utils.getFlag('O', options));    setInvertSelection(Utils.getFlag('V', options));    String numBins = Utils.getOption('B', options);    if (numBins.length() != 0) {      setBins(Integer.parseInt(numBins));    } else {      setBins(10);    }        String convertList = Utils.getOption('R', options);    if (convertList.length() != 0) {      setAttributeIndices(convertList);    } else {      setAttributeIndices("first-last");    }    if (getInputFormat() != null) {      setInputFormat(getInputFormat());    }  }  /**   * Gets the current settings of the filter.   *   * @return an array of strings suitable for passing to setOptions   */  public String [] getOptions() {    String [] options = new String [12];    int current = 0;    if (getMakeBinary()) {      options[current++] = "-D";    }    if (getUseEqualFrequency()) {      options[current++] = "-F";    }    if (getFindNumBins()) {      options[current++] = "-O";    }    if (getInvertSelection()) {      options[current++] = "-V";    }    options[current++] = "-B"; options[current++] = "" + getBins();    if (!getAttributeIndices().equals("")) {      options[current++] = "-R"; options[current++] = getAttributeIndices();    }    while (current < options.length) {      options[current++] = "";    }    return options;  }  /**   * Sets the format of the input instances.   *   * @param instanceInfo an Instances object containing the input instance   * structure (any instances contained in the object are ignored - only the   * structure is required).   * @return true if the outputFormat may be collected immediately   * @exception Exception if the input format can't be set successfully   */  public boolean setInputFormat(Instances instanceInfo) throws Exception {    super.setInputFormat(instanceInfo);    m_DiscretizeCols.setUpper(instanceInfo.numAttributes() - 1);    m_CutPoints = null;        if (getFindNumBins() && getUseEqualFrequency()) {      throw new IllegalArgumentException("Bin number optimization in conjunction "+					 "with equal-frequency binning not implemented.");    }    // If we implement loading cutfiles, then load     //them here and set the output format    return false;  }    /**   * Input an instance for filtering. Ordinarily the instance is processed   * and made available for output immediately. Some filters require all   * instances be read before producing output.   *   * @param instance the input instance   * @return true if the filtered instance may now be   * collected with output().   * @exception IllegalStateException if no input format has been defined.   */  public boolean input(Instance instance) {    if (getInputFormat() == null) {      throw new IllegalStateException("No input instance format defined");    }    if (m_NewBatch) {      resetQueue();      m_NewBatch = false;    }        if (m_CutPoints != null) {      convertInstance(instance);      return true;    }    bufferInput(instance);    return false;  }  /**   * Signifies that this batch of input to the filter is finished. If the    * filter requires all instances prior to filtering, output() may now    * be called to retrieve the filtered instances.   *   * @return true if there are instances pending output   * @exception IllegalStateException if no input structure has been defined   */  public boolean batchFinished() {    if (getInputFormat() == null) {      throw new IllegalStateException("No input instance format defined");    }    if (m_CutPoints == null) {      calculateCutPoints();      setOutputFormat();      // If we implement saving cutfiles, save the cuts here      // Convert pending input instances      for(int i = 0; i < getInputFormat().numInstances(); i++) {	convertInstance(getInputFormat().instance(i));      }    }     flushInput();    m_NewBatch = true;    return (numPendingOutput() != 0);  }  /**   * Returns a string describing this filter   *   * @return a description of the filter suitable for   * displaying in the explorer/experimenter gui   */  public String globalInfo() {    return "An instance filter that discretizes a range of numeric"      + " attributes in the dataset into nominal attributes."      + " Discretization is by simple binning.";  }    /**   * Returns the tip text for this property   *   * @return tip text for this property suitable for   * displaying in the explorer/experimenter gui   */  public String findNumBinsTipText() {    return "Optimize number of equal-width bins using leave-one-out.";  }  /**   * Get the value of FindNumBins.   *   * @return Value of FindNumBins.   */  public boolean getFindNumBins() {        return m_FindNumBins;  }    /**   * Set the value of FindNumBins.   *   * @param newFindNumBins Value to assign to FindNumBins.   */  public void setFindNumBins(boolean newFindNumBins) {        m_FindNumBins = newFindNumBins;  }    /**   * Returns the tip text for this property   *   * @return tip text for this property suitable for   * displaying in the explorer/experimenter gui   */  public String makeBinaryTipText() {    return "Make resulting attributes binary.";  }  /**   * Gets whether binary attributes should be made for discretized ones.   *   * @return true if attributes will be binarized   */  public boolean getMakeBinary() {    return m_MakeBinary;  }  /**    * Sets whether binary attributes should be made for discretized ones.   *   * @param makeBinary if binary attributes are to be made   */  public void setMakeBinary(boolean makeBinary) {    m_MakeBinary = makeBinary;  }    /**   * Get the value of UseEqualFrequency.   *   * @return Value of UseEqualFrequency.   */  public boolean getUseEqualFrequency() {        return m_UseEqualFrequency;  }    /**   * Set the value of UseEqualFrequency.   *   * @param newUseEqualFrequency Value to assign to UseEqualFrequency.   */  public void setUseEqualFrequency(boolean newUseEqualFrequency) {        m_UseEqualFrequency = newUseEqualFrequency;  }  /**   * Returns the tip text for this property   *   * @return tip text for this property suitable for   * displaying in the explorer/experimenter gui   */  public String binsTipText() {    return "Number of bins.";  }  /**   * Gets the number of bins numeric attributes will be divided into   *   * @return the number of bins.   */  public int getBins() {    return m_NumBins;  }  /**   * Sets the number of bins to divide each selected numeric attribute into   *   * @param numBins the number of bins   */  public void setBins(int numBins) {    m_NumBins = numBins;  }  /**   * Returns the tip text for this property   *   * @return tip text for this property suitable for   * displaying in the explorer/experimenter gui   */  public String invertSelectionTipText() {    return "Set attribute selection mode. If false, only selected"      + " (numeric) attributes in the range will be discretized; if"      + " true, only non-selected attributes will be discretized.";  }

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -