⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 replacemissingvalues.java

📁 wekaUT是 university texas austin 开发的基于weka的半指导学习(semi supervised learning)的分类器
💻 JAVA
字号:
/* *    This program is free software; you can redistribute it and/or modify *    it under the terms of the GNU General Public License as published by *    the Free Software Foundation; either version 2 of the License, or *    (at your option) any later version. * *    This program is distributed in the hope that it will be useful, *    but WITHOUT ANY WARRANTY; without even the implied warranty of *    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the *    GNU General Public License for more details. * *    You should have received a copy of the GNU General Public License *    along with this program; if not, write to the Free Software *    Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. *//* *    ReplaceMissingValues.java *    Copyright (C) 1999 Eibe Frank * */package weka.filters.unsupervised.attribute;import weka.filters.*;import java.io.*;import java.util.*;import weka.core.*;/**  * Replaces all missing values for nominal and numeric attributes in a  * dataset with the modes and means from the training data. * * @author Eibe Frank (eibe@cs.waikato.ac.nz)  * @version $Revision: 1.1.1.1 $ */public class ReplaceMissingValues extends Filter  implements UnsupervisedFilter {  /** The modes and means */  private double[] m_ModesAndMeans = null;  /**   * Sets the format of the input instances.   *   * @param instanceInfo an Instances object containing the input    * instance structure (any instances contained in the object are    * ignored - only the structure is required).   * @return true if the outputFormat may be collected immediately   * @exception Exception if the input format can't be set    * successfully   */  public boolean setInputFormat(Instances instanceInfo)        throws Exception {    super.setInputFormat(instanceInfo);    setOutputFormat(instanceInfo);    m_ModesAndMeans = null;    return true;  }  /**   * Input an instance for filtering. Filter requires all   * training instances be read before producing output.   *   * @param instance the input instance   * @return true if the filtered instance may now be   * collected with output().   * @exception IllegalStateException if no input format has been set.   */  public boolean input(Instance instance) {    if (getInputFormat() == null) {      throw new IllegalStateException("No input instance format defined");    }    if (m_NewBatch) {      resetQueue();      m_NewBatch = false;    }    if (m_ModesAndMeans == null) {      bufferInput(instance);      return false;    } else {      convertInstance(instance);      return true;    }  }  /**   * Signify that this batch of input to the filter is finished.    * If the filter requires all instances prior to filtering,   * output() may now be called to retrieve the filtered instances.   *   * @return true if there are instances pending output   * @exception IllegalStateException if no input structure has been defined   */  public boolean batchFinished() {    if (getInputFormat() == null) {      throw new IllegalStateException("No input instance format defined");    }    if (m_ModesAndMeans == null) {      // Compute modes and means      double sumOfWeights =  getInputFormat().sumOfWeights();      double[][] counts = new double[getInputFormat().numAttributes()][];      for (int i = 0; i < getInputFormat().numAttributes(); i++) {	if (getInputFormat().attribute(i).isNominal()) {	  counts[i] = new double[getInputFormat().attribute(i).numValues()];	  counts[i][0] = sumOfWeights;	}      }      double[] sums = new double[getInputFormat().numAttributes()];      for (int i = 0; i < sums.length; i++) {	sums[i] = sumOfWeights;      }      double[] results = new double[getInputFormat().numAttributes()];      for (int j = 0; j < getInputFormat().numInstances(); j++) {	Instance inst = getInputFormat().instance(j);	for (int i = 0; i < inst.numValues(); i++) {	  if (!inst.isMissingSparse(i)) {	    double value = inst.valueSparse(i);	    if (inst.attributeSparse(i).isNominal()) {	      counts[inst.index(i)][(int)value] += inst.weight();	      counts[inst.index(i)][0] -= inst.weight();	    } else if (inst.attributeSparse(i).isNumeric()) {	      results[inst.index(i)] += inst.weight() * inst.valueSparse(i);	    }	  } else {	    if (inst.attributeSparse(i).isNominal()) {	      counts[inst.index(i)][0] -= inst.weight();	    } else if (inst.attributeSparse(i).isNumeric()) {	      sums[inst.index(i)] -= inst.weight();	    }	  }	}      }      m_ModesAndMeans = new double[getInputFormat().numAttributes()];      for (int i = 0; i < getInputFormat().numAttributes(); i++) {	if (getInputFormat().attribute(i).isNominal()) {	  m_ModesAndMeans[i] = (double)Utils.maxIndex(counts[i]);	} else if (getInputFormat().attribute(i).isNumeric()) {	  if (Utils.gr(sums[i], 0)) {	    m_ModesAndMeans[i] = results[i] / sums[i];	  }	}      }      // Convert pending input instances      for(int i = 0; i < getInputFormat().numInstances(); i++) {	convertInstance(getInputFormat().instance(i));      }    }     // Free memory    flushInput();    m_NewBatch = true;    return (numPendingOutput() != 0);  }  /**   * Convert a single instance over. The converted instance is    * added to the end of the output queue.   *   * @param instance the instance to convert   */  private void convertInstance(Instance instance) {      Instance inst = null;    if (instance instanceof SparseInstance) {      double []vals = new double[instance.numValues()];      int []indices = new int[instance.numValues()];      int num = 0;      for (int j = 0; j < instance.numValues(); j++) {	if (instance.isMissingSparse(j) &&	    (instance.attributeSparse(j).isNominal() ||	     instance.attributeSparse(j).isNumeric())) {	  if (m_ModesAndMeans[instance.index(j)] != 0.0) {	    vals[num] = m_ModesAndMeans[instance.index(j)];	    indices[num] = instance.index(j);	    num++;	  } 	} else {	  vals[num] = instance.valueSparse(j);	  indices[num] = instance.index(j);	  num++;	}      }       if (num == instance.numValues()) {	inst = new SparseInstance(instance.weight(), vals, indices,                                  instance.numAttributes());      } else {	double []tempVals = new double[num];	int []tempInd = new int[num];	System.arraycopy(vals, 0, tempVals, 0, num);	System.arraycopy(indices, 0, tempInd, 0, num);	inst = new SparseInstance(instance.weight(), tempVals, tempInd,                                  instance.numAttributes());      }    } else {      double []vals = new double[getInputFormat().numAttributes()];      for (int j = 0; j < instance.numAttributes(); j++) {	if (instance.isMissing(j) &&	    (getInputFormat().attribute(j).isNominal() ||	     getInputFormat().attribute(j).isNumeric())) {	  vals[j] = m_ModesAndMeans[j]; 	} else {	  vals[j] = instance.value(j);	}      }       inst = new Instance(instance.weight(), vals);    }     inst.setDataset(instance.dataset());    push(inst);  }  /**   * Main method for testing this class.   *   * @param argv should contain arguments to the filter:    * use -h for help   */  public static void main(String [] argv) {    try {      if (Utils.getFlag('b', argv)) { 	Filter.batchFilterFile(new ReplaceMissingValues(), argv);      } else {	Filter.filterFile(new ReplaceMissingValues(), argv);      }    } catch (Exception ex) {      System.out.println(ex.getMessage());    }  }}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -