⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 addcluster.java

📁 wekaUT是 university texas austin 开发的基于weka的半指导学习(semi supervised learning)的分类器
💻 JAVA
字号:
/* *    This program is free software; you can redistribute it and/or modify *    it under the terms of the GNU General Public License as published by *    the Free Software Foundation; either version 2 of the License, or *    (at your option) any later version. * *    This program is distributed in the hope that it will be useful, *    but WITHOUT ANY WARRANTY; without even the implied warranty of *    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the *    GNU General Public License for more details. * *    You should have received a copy of the GNU General Public License *    along with this program; if not, write to the Free Software *    Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. *//* *    AddCluster.java *    Copyright (C) 2002 Richard Kirkby * */package weka.filters.unsupervised.attribute;import weka.filters.*;import weka.clusterers.Clusterer;import weka.core.*;import java.util.Enumeration;import java.util.Vector;/**  * A filter that adds a new nominal attribute representing the cluster assigned * to each instance by the specified clustering algorithm.<p> * * Valid filter-specific options are: <p> * * -W clusterer string <br> * Full class name of clusterer to use, followed by scheme options. (required)<p> * * -I range string <br> * The range of attributes the clusterer should ignore.<p> * * @author Richard Kirkby (rkirkby@cs.waikato.ac.nz) * @version $Revision: 1.1.1.1 $ */public class AddCluster extends Filter implements UnsupervisedFilter, OptionHandler {  /** The clusterer used to do the cleansing */  protected Clusterer m_Clusterer = new weka.clusterers.SimpleKMeans();  /** Range of attributes to ignore */  protected Range m_IgnoreAttributesRange = null;  /**   * Sets the format of the input instances.   *   * @param instanceInfo an Instances object containing the input instance   * structure (any instances contained in the object are ignored - only the   * structure is required).   * @return true if the outputFormat may be collected immediately   * @exception Exception if the inputFormat can't be set successfully    */   public boolean setInputFormat(Instances instanceInfo) throws Exception {        super.setInputFormat(instanceInfo);    return false;  }    /**   * Signify that this batch of input to the filter is finished.   *   * @return true if there are instances pending output   * @exception IllegalStateException if no input structure has been defined    */    public boolean batchFinished() throws Exception {    if (getInputFormat() == null) {      throw new IllegalStateException("No input instance format defined");    }    Instances toFilter = getInputFormat();    Instances toFilterIgnoringAttributes = toFilter;    // filter out attributes if necessary    if (m_IgnoreAttributesRange != null) {      toFilterIgnoringAttributes = new Instances(toFilter);      Filter removeAttributes = new Remove();      ((Remove)removeAttributes).setAttributeIndices(m_IgnoreAttributesRange.getRanges());      ((Remove)removeAttributes).setInvertSelection(false);      removeAttributes.setInputFormat(toFilter);      for (int i = 0; i < toFilter.numInstances(); i++) {	removeAttributes.input(toFilter.instance(i));      }      removeAttributes.batchFinished();      toFilterIgnoringAttributes = removeAttributes.getOutputFormat();      Instance tempInst;      while ((tempInst = removeAttributes.output()) != null) {	toFilterIgnoringAttributes.add(tempInst);      }    }    // build the clusterer    m_Clusterer.buildClusterer(toFilterIgnoringAttributes);    // create output dataset with new attribute    Instances filtered = new Instances(toFilter, 0);     FastVector nominal_values = new FastVector(m_Clusterer.numberOfClusters());    for (int i=0; i<m_Clusterer.numberOfClusters(); i++) {      nominal_values.addElement("cluster" + (i+1));     }    filtered.insertAttributeAt(new Attribute("cluster", nominal_values),			       filtered.numAttributes());    setOutputFormat(filtered);    Instance original, processed;    // build new dataset    for (int i=0; i<toFilter.numInstances(); i++) {            original = toFilter.instance(i);      // copy values      double[] instanceVals = new double[filtered.numAttributes()];      for(int j = 0; j < toFilter.numAttributes(); j++) {	instanceVals[j] = original.value(j);      }      // add cluster to end      instanceVals[toFilter.numAttributes()]	= m_Clusterer.clusterInstance(toFilterIgnoringAttributes.instance(i));            // create new instance      if (original instanceof SparseInstance) {	processed = new SparseInstance(original.weight(), instanceVals);      } else {	processed = new Instance(original.weight(), instanceVals);      }      copyStringValues(original, false, original.dataset(), getOutputStringIndex(),		       getOutputFormat(), getOutputStringIndex());      processed.setDataset(filtered);            push(processed);    }    return (numPendingOutput() != 0);  }  /**   * Returns an enumeration describing the available options.   *   * @return an enumeration of all the available options.   */  public Enumeration listOptions() {        Vector newVector = new Vector(2);        newVector.addElement(new Option(	      "\tFull class name of clusterer to use, followed\n"	      + "\tby scheme options. (required)\n"	      + "\teg: \"weka.clusterers.SimpleKMeans -N 3\"",	      "W", 1, "-W <clusterer specification>"));        newVector.addElement(new Option(	      "\tThe range of attributes the clusterer should ignore.\n",	      "I", 1,"-I <att1,att2-att4,...>"));    return newVector.elements();  }  /**   * Parses the options for this object. Valid options are: <p>   *   * -W clusterer string <br>   * Full class name of clusterer to use, followed by scheme options. (required)<p>   *      * -I range string <br>   * The range of attributes the clusterer should ignore.<p>   *   * @param options the list of options as an array of strings   * @exception Exception if an option is not supported   */  public void setOptions(String[] options) throws Exception {    String clustererString = Utils.getOption('W', options);    if (clustererString.length() == 0) {      throw new Exception("A clusterer must be specified"			  + " with the -W option.");    }    String[] clustererSpec = Utils.splitOptions(clustererString);    if (clustererSpec.length == 0) {      throw new Exception("Invalid clusterer specification string");    }    String clustererName = clustererSpec[0];    clustererSpec[0] = "";    setClusterer(Clusterer.forName(clustererName, clustererSpec));            setIgnoredAttributeIndices(Utils.getOption('I', options));    Utils.checkForRemainingOptions(options);  }  /**   * Gets the current settings of the filter.   *   * @return an array of strings suitable for passing to setOptions   */  public String [] getOptions() {    String [] options = new String [5];    int current = 0;    options[current++] = "-W"; options[current++] = "" + getClustererSpec();        if (!getIgnoredAttributeIndices().equals("")) {      options[current++] = "-I"; options[current++] = getIgnoredAttributeIndices();    }    while (current < options.length) {      options[current++] = "";    }    return options;  }  /**   * Returns a string describing this filter   *   * @return a description of the filter suitable for   * displaying in the explorer/experimenter gui   */  public String globalInfo() {    return "A filter that adds a new nominal attribute representing the cluster "      + "assigned to each instance by the specified clustering algorithm.";  }  /**   * Returns the tip text for this property   *   * @return tip text for this property suitable for   * displaying in the explorer/experimenter gui   */  public String clustererTipText() {    return "The clusterer to assign clusters with.";  }  /**   * Sets the clusterer to assign clusters with.   *   * @param clusterer The clusterer to be used (with its options set).   */  public void setClusterer(Clusterer clusterer) {    m_Clusterer = clusterer;  }    /**   * Gets the clusterer used by the filter.   *   * @return The clusterer being used.   */  public Clusterer getClusterer() {    return m_Clusterer;  }  /**   * Gets the clusterer specification string, which contains the class name of   * the clusterer and any options to the clusterer.   *   * @return the clusterer string.   */  protected String getClustererSpec() {        Clusterer c = getClusterer();    if (c instanceof OptionHandler) {      return c.getClass().getName() + " "	+ Utils.joinOptions(((OptionHandler)c).getOptions());    }    return c.getClass().getName();  }  /**   * Returns the tip text for this property   *   * @return tip text for this property suitable for   * displaying in the explorer/experimenter gui   */  public String ignoredAttributeIndicesTipText() {    return "The range of attributes to be ignored by the clusterer. eg: first-3,5,9-last";  }  /**   * Gets ranges of attributes to be ignored.   *   * @return a string containing a comma-separated list of ranges   */  public String getIgnoredAttributeIndices() {    if (m_IgnoreAttributesRange == null) {      return "";    } else {      return m_IgnoreAttributesRange.getRanges();    }  }  /**   * Sets the ranges of attributes to be ignored. If provided string   * is null, no attributes will be ignored.   *   * @param rangeList a string representing the list of attributes.    * eg: first-3,5,6-last   * @exception IllegalArgumentException if an invalid range list is supplied    */  public void setIgnoredAttributeIndices(String rangeList) {    if ((rangeList == null) || (rangeList.length() == 0)) {      m_IgnoreAttributesRange = null;    } else {      m_IgnoreAttributesRange = new Range();      m_IgnoreAttributesRange.setRanges(rangeList);    }  }  /**   * Main method for testing this class.   *   * @param argv should contain arguments to the filter: use -h for help   */  public static void main(String [] argv) {    try {      if (Utils.getFlag('b', argv)) { 	Filter.batchFilterFile(new AddCluster(), argv);       } else {	Filter.filterFile(new AddCluster(), argv);      }    } catch (Exception ex) {      System.out.println(ex.getMessage());    }  }}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -