⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 resample.java

📁 wekaUT是 university texas austin 开发的基于weka的半指导学习(semi supervised learning)的分类器
💻 JAVA
字号:
/* *    This program is free software; you can redistribute it and/or modify *    it under the terms of the GNU General Public License as published by *    the Free Software Foundation; either version 2 of the License, or *    (at your option) any later version. * *    This program is distributed in the hope that it will be useful, *    but WITHOUT ANY WARRANTY; without even the implied warranty of *    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the *    GNU General Public License for more details. * *    You should have received a copy of the GNU General Public License *    along with this program; if not, write to the Free Software *    Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. *//* *    Resample.java *    Copyright (C) 2002 University of Waikato * */package weka.filters.supervised.instance;import weka.filters.*;import weka.core.Instance;import weka.core.Instances;import weka.core.OptionHandler;import weka.core.Option;import weka.core.Utils;import java.util.Random;import java.util.Enumeration;import java.util.Vector;/**  * Produces a random subsample of a dataset. The original dataset must * fit entirely in memory. The number of instances in the generated * dataset may be specified. The dataset must have a nominal class * attribute. If not, use the unsupervised version. The filter can be * made to maintain the class distribution in the subsample, or to bias * the class distribution toward a uniform distribution. When used in batch * mode, subsequent batches are <b>not</b> resampled. * * Valid options are:<p> * * -S num <br> * Specify the random number seed (default 1).<p> * * -B num <br> * Specify a bias towards uniform class distribution. 0 = distribution * in input data, 1 = uniform class distribution (default 0). <p> * * -Z percent <br> * Specify the size of the output dataset, as a percentage of the input * dataset (default 100). <p> * * @author Len Trigg (len@reeltwo.com) * @version $Revision: 1.1.1.1 $  **/public class Resample extends Filter implements SupervisedFilter,						OptionHandler {  /** The subsample size, percent of original set, default 100% */  private double m_SampleSizePercent = 100;    /** The random number generator seed */  private int m_RandomSeed = 1;    /** The degree of bias towards uniform (nominal) class distribution */  private double m_BiasToUniformClass = 0;  /** True if the first batch has been done */  private boolean m_FirstBatchDone = false;  /**   * Returns an enumeration describing the available options.   *   * @return an enumeration of all the available options.   */  public Enumeration listOptions() {    Vector newVector = new Vector(1);    newVector.addElement(new Option(              "\tSpecify the random number seed (default 1)",              "S", 1, "-S <num>"));    newVector.addElement(new Option(              "\tThe size of the output dataset, as a percentage of\n"              +"\tthe input dataset (default 100)",              "Z", 1, "-Z <num>"));    newVector.addElement(new Option(              "\tBias factor towards uniform class distribution.\n"              +"\t0 = distribution in input data -- 1 = uniform distribution.\n"              +"\t(default 0)",              "B", 1, "-B <num>"));    return newVector.elements();  }  /**   * Parses a list of options for this object. Valid options are:<p>   *   * -S num <br>   * Specify the random number seed (default 1).<p>   *   * -B num <br>   * Specify a bias towards uniform class distribution. 0 = distribution   * in input data, 1 = uniform class distribution (default 0). <p>   *   * -Z percent <br>   * Specify the size of the output dataset, as a percentage of the input   * dataset (default 100). <p>   *   * @param options the list of options as an array of strings   * @exception Exception if an option is not supported   */  public void setOptions(String[] options) throws Exception {        String seedString = Utils.getOption('S', options);    if (seedString.length() != 0) {      setRandomSeed(Integer.parseInt(seedString));    } else {      setRandomSeed(1);    }    String biasString = Utils.getOption('B', options);    if (biasString.length() != 0) {      setBiasToUniformClass(Double.valueOf(biasString).doubleValue());    } else {      setBiasToUniformClass(0);    }    String sizeString = Utils.getOption('Z', options);    if (sizeString.length() != 0) {      setSampleSizePercent(Double.valueOf(sizeString).doubleValue());    } else {      setSampleSizePercent(100);    }    if (getInputFormat() != null) {      setInputFormat(getInputFormat());    }  }  /**   * Gets the current settings of the filter.   *   * @return an array of strings suitable for passing to setOptions   */  public String [] getOptions() {    String [] options = new String [6];    int current = 0;    options[current++] = "-B";     options[current++] = "" + getBiasToUniformClass();    options[current++] = "-S"; options[current++] = "" + getRandomSeed();    options[current++] = "-Z"; options[current++] = "" + getSampleSizePercent();    while (current < options.length) {      options[current++] = "";    }    return options;  }      /**   * Gets the bias towards a uniform class. A value of 0 leaves the class   * distribution as-is, a value of 1 ensures the class distributions are   * uniform in the output data.   *   * @return the current bias   */  public double getBiasToUniformClass() {    return m_BiasToUniformClass;  }    /**   * Sets the bias towards a uniform class. A value of 0 leaves the class   * distribution as-is, a value of 1 ensures the class distributions are   * uniform in the output data.   *   * @param newBiasToUniformClass the new bias value, between 0 and 1.   */  public void setBiasToUniformClass(double newBiasToUniformClass) {    m_BiasToUniformClass = newBiasToUniformClass;  }    /**   * Gets the random number seed.   *   * @return the random number seed.   */  public int getRandomSeed() {    return m_RandomSeed;  }    /**   * Sets the random number seed.   *   * @param newSeed the new random number seed.   */  public void setRandomSeed(int newSeed) {    m_RandomSeed = newSeed;  }    /**   * Gets the subsample size as a percentage of the original set.   *   * @return the subsample size   */  public double getSampleSizePercent() {    return m_SampleSizePercent;  }    /**   * Sets the size of the subsample, as a percentage of the original set.   *   * @param newSampleSizePercent the subsample set size, between 0 and 100.   */  public void setSampleSizePercent(double newSampleSizePercent) {    m_SampleSizePercent = newSampleSizePercent;  }    /**   * Sets the format of the input instances.   *   * @param instanceInfo an Instances object containing the input    * instance structure (any instances contained in the object are    * ignored - only the structure is required).   * @return true if the outputFormat may be collected immediately   * @exception Exception if the input format can't be set    * successfully   */  public boolean setInputFormat(Instances instanceInfo)        throws Exception {    if (instanceInfo.classIndex() < 0 || !instanceInfo.classAttribute().isNominal()) {      throw new IllegalArgumentException("Supervised resample requires nominal class");    }    super.setInputFormat(instanceInfo);    setOutputFormat(instanceInfo);    m_FirstBatchDone = false;    return true;  }  /**   * Input an instance for filtering. Filter requires all   * training instances be read before producing output.   *   * @param instance the input instance   * @return true if the filtered instance may now be   * collected with output().   * @exception IllegalStateException if no input structure has been defined   */  public boolean input(Instance instance) {    if (getInputFormat() == null) {      throw new IllegalStateException("No input instance format defined");    }    if (m_NewBatch) {      resetQueue();      m_NewBatch = false;    }    if (m_FirstBatchDone) {      push(instance);      return true;    } else {      bufferInput(instance);      return false;    }  }  /**   * Signify that this batch of input to the filter is finished.    * If the filter requires all instances prior to filtering,   * output() may now be called to retrieve the filtered instances.   *   * @return true if there are instances pending output   * @exception IllegalStateException if no input structure has been defined   */  public boolean batchFinished() {    if (getInputFormat() == null) {      throw new IllegalStateException("No input instance format defined");    }    if (!m_FirstBatchDone) {      // Do the subsample, and clear the input instances.      createSubsample();    }    flushInput();    m_NewBatch = true;    m_FirstBatchDone = true;    return (numPendingOutput() != 0);  }  /**   * Creates a subsample of the current set of input instances. The output   * instances are pushed onto the output queue for collection.   */  private void createSubsample() {    int origSize = getInputFormat().numInstances();    int sampleSize = (int) (origSize * m_SampleSizePercent / 100);    // Subsample that takes class distribution into consideration    // Sort according to class attribute.    getInputFormat().sort(getInputFormat().classIndex());        // Create an index of where each class value starts    int [] classIndices = new int [getInputFormat().numClasses() + 1];    int currentClass = 0;    classIndices[currentClass] = 0;    for (int i = 0; i < getInputFormat().numInstances(); i++) {      Instance current = getInputFormat().instance(i);      if (current.classIsMissing()) {	for (int j = currentClass + 1; j < classIndices.length; j++) {	  classIndices[j] = i;	}	break;      } else if (current.classValue() != currentClass) {	for (int j = currentClass + 1; j <= current.classValue(); j++) {	  classIndices[j] = i;	}          	currentClass = (int) current.classValue();      }    }    if (currentClass <= getInputFormat().numClasses()) {      for (int j = currentClass + 1; j < classIndices.length; j++) {	classIndices[j] = getInputFormat().numInstances();      }    }        int actualClasses = 0;    for (int i = 0; i < classIndices.length - 1; i++) {      if (classIndices[i] != classIndices[i + 1]) {	actualClasses++;      }    }    // Create the new sample        Random random = new Random(m_RandomSeed);    // Convert pending input instances    for(int i = 0; i < sampleSize; i++) {      int index = 0;      if (random.nextDouble() < m_BiasToUniformClass) {	// Pick a random class (of those classes that actually appear)	int cIndex = Math.abs(random.nextInt()) % actualClasses;	for (int j = 0, k = 0; j < classIndices.length - 1; j++) {	  if ((classIndices[j] != classIndices[j + 1]) 	      && (k++ >= cIndex)) {	    // Pick a random instance of the designated class	    index = classIndices[j] 	      + (Math.abs(random.nextInt()) % (classIndices[j + 1]					       - classIndices[j]));	    break;	  }	}      } else {	index = (int) (random.nextDouble() * origSize);      }      push((Instance)getInputFormat().instance(index).copy());    }  }      /**   * Main method for testing this class.   *   * @param argv should contain arguments to the filter:    * use -h for help   */  public static void main(String [] argv) {    try {      if (Utils.getFlag('b', argv)) { 	Filter.batchFilterFile(new Resample(), argv);      } else {	Filter.filterFile(new Resample(), argv);      }    } catch (Exception ex) {      System.out.println(ex.getMessage());    }  }}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -