⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 discretize.java

📁 wekaUT是 university texas austin 开发的基于weka的半指导学习(semi supervised learning)的分类器
💻 JAVA
📖 第 1 页 / 共 2 页
字号:
   * 1. <br>   * eg: first-3,5,6-last   * @exception IllegalArgumentException if an invalid range list is supplied    */  public void setAttributeIndices(String rangeList) {    m_DiscretizeCols.setRanges(rangeList);  }  /**   * Sets which attributes are to be Discretized (only numeric   * attributes among the selection will be Discretized).   *   * @param attributes an array containing indexes of attributes to Discretize.   * Since the array will typically come from a program, attributes are indexed   * from 0.   * @exception IllegalArgumentException if an invalid set of ranges   * is supplied    */  public void setAttributeIndicesArray(int [] attributes) {    setAttributeIndices(Range.indicesToRangeList(attributes));  }  /**   * Gets the cut points for an attribute   *   * @param the index (from 0) of the attribute to get the cut points of   * @return an array containing the cutpoints (or null if the   * attribute requested isn't being Discretized   */  public double [] getCutPoints(int attributeIndex) {    if (m_CutPoints == null) {      return null;    }    return m_CutPoints[attributeIndex];  }  /** Generate the cutpoints for each attribute */  protected void calculateCutPoints() {    Instances copy = null;    m_CutPoints = new double [getInputFormat().numAttributes()] [];    for(int i = getInputFormat().numAttributes() - 1; i >= 0; i--) {      if ((m_DiscretizeCols.isInRange(i)) && 	  (getInputFormat().attribute(i).isNumeric())) {	// Use copy to preserve order	if (copy == null) {	  copy = new Instances(getInputFormat());	}	calculateCutPointsByMDL(i, copy);      }    }  }  /**   * Set cutpoints for a single attribute using MDL.   *   * @param index the index of the attribute to set cutpoints for   */  protected void calculateCutPointsByMDL(int index,					 Instances data) {    // Sort instances    data.sort(data.attribute(index));    // Find first instances that's missing    int firstMissing = data.numInstances();    for (int i = 0; i < data.numInstances(); i++) {      if (data.instance(i).isMissing(index)) {        firstMissing = i;        break;      }    }    m_CutPoints[index] = cutPointsForSubset(data, index, 0, firstMissing);  }  /** Test using Kononenko's MDL criterion. */  private boolean KononenkosMDL(double[] priorCounts,				double[][] bestCounts,				double numInstances,				int numCutPoints) {    double distPrior, instPrior, distAfter = 0, sum, instAfter = 0;    double before, after;    int numClassesTotal;    // Number of classes occuring in the set    numClassesTotal = 0;    for (int i = 0; i < priorCounts.length; i++) {      if (priorCounts[i] > 0) {	numClassesTotal++;      }    }    // Encode distribution prior to split    distPrior = SpecialFunctions.log2Binomial(numInstances 					      + numClassesTotal - 1,					      numClassesTotal - 1);    // Encode instances prior to split.    instPrior = SpecialFunctions.log2Multinomial(numInstances,						 priorCounts);    before = instPrior + distPrior;    // Encode distributions and instances after split.    for (int i = 0; i < bestCounts.length; i++) {      sum = Utils.sum(bestCounts[i]);      distAfter += SpecialFunctions.log2Binomial(sum + numClassesTotal - 1,						 numClassesTotal - 1);      instAfter += SpecialFunctions.log2Multinomial(sum,						    bestCounts[i]);    }    // Coding cost after split    after = Utils.log2(numCutPoints) + distAfter + instAfter;    // Check if split is to be accepted    return (Utils.gr(before, after));  }  /** Test using Fayyad and Irani's MDL criterion. */  private boolean FayyadAndIranisMDL(double[] priorCounts,				     double[][] bestCounts,				     double numInstances,				     int numCutPoints) {    double priorEntropy, entropy, gain;     double entropyLeft, entropyRight, delta;    int numClassesTotal, numClassesRight, numClassesLeft;    // Compute entropy before split.    priorEntropy = ContingencyTables.entropy(priorCounts);    // Compute entropy after split.    entropy = ContingencyTables.entropyConditionedOnRows(bestCounts);    // Compute information gain.    gain = priorEntropy - entropy;    // Number of classes occuring in the set    numClassesTotal = 0;    for (int i = 0; i < priorCounts.length; i++) {      if (priorCounts[i] > 0) {	numClassesTotal++;      }    }    // Number of classes occuring in the left subset    numClassesLeft = 0;    for (int i = 0; i < bestCounts[0].length; i++) {      if (bestCounts[0][i] > 0) {	numClassesLeft++;      }    }    // Number of classes occuring in the right subset    numClassesRight = 0;    for (int i = 0; i < bestCounts[1].length; i++) {      if (bestCounts[1][i] > 0) {	numClassesRight++;      }    }    // Entropy of the left and the right subsets    entropyLeft = ContingencyTables.entropy(bestCounts[0]);    entropyRight = ContingencyTables.entropy(bestCounts[1]);    // Compute terms for MDL formula    delta = Utils.log2(Math.pow(3, numClassesTotal) - 2) -       (((double) numClassesTotal * priorEntropy) -        (numClassesRight * entropyRight) -        (numClassesLeft * entropyLeft));    // Check if split is to be accepted    return (Utils.gr(gain, (Utils.log2(numCutPoints) + delta) /		     (double)numInstances));  }      /** Selects cutpoints for sorted subset. */  private double[] cutPointsForSubset(Instances instances, int attIndex, 				      int first, int lastPlusOne) {     double[][] counts, bestCounts;    double[] priorCounts, left, right, cutPoints;    double currentCutPoint = -Double.MAX_VALUE, bestCutPoint = -1,       currentEntropy, bestEntropy, priorEntropy, gain;    int bestIndex = -1, numInstances = 0, numCutPoints = 0;    // Compute number of instances in set    if ((lastPlusOne - first) < 2) {      return null;    }    // Compute class counts.    counts = new double[2][instances.numClasses()];    for (int i = first; i < lastPlusOne; i++) {      numInstances += instances.instance(i).weight();      counts[1][(int)instances.instance(i).classValue()] +=	instances.instance(i).weight();    }    // Save prior counts    priorCounts = new double[instances.numClasses()];    System.arraycopy(counts[1], 0, priorCounts, 0, 		     instances.numClasses());    // Entropy of the full set    priorEntropy = ContingencyTables.entropy(priorCounts);    bestEntropy = priorEntropy;        // Find best entropy.    bestCounts = new double[2][instances.numClasses()];    for (int i = first; i < (lastPlusOne - 1); i++) {      counts[0][(int)instances.instance(i).classValue()] +=	instances.instance(i).weight();      counts[1][(int)instances.instance(i).classValue()] -=	instances.instance(i).weight();      if (Utils.sm(instances.instance(i).value(attIndex), 		   instances.instance(i + 1).value(attIndex))) {	currentCutPoint = instances.instance(i).value(attIndex); //+ 	//instances.instance(i + 1).value(attIndex)) / 2.0;	currentEntropy = ContingencyTables.entropyConditionedOnRows(counts);	if (Utils.sm(currentEntropy, bestEntropy)) {	  bestCutPoint = currentCutPoint;	  bestEntropy = currentEntropy;	  bestIndex = i;	  System.arraycopy(counts[0], 0, 			   bestCounts[0], 0, instances.numClasses());	  System.arraycopy(counts[1], 0, 			   bestCounts[1], 0, instances.numClasses()); 	}	numCutPoints++;      }    }    // Use worse encoding?    if (!m_UseBetterEncoding) {      numCutPoints = (lastPlusOne - first) - 1;    }    // Checks if gain is zero    gain = priorEntropy - bestEntropy;    if (Utils.eq(gain, 0)) {      return null;    }    // Check if split is to be accepted    if ((m_UseKononenko && KononenkosMDL(priorCounts, bestCounts,					 numInstances, numCutPoints)) ||	(!m_UseKononenko && FayyadAndIranisMDL(priorCounts, bestCounts,					       numInstances, numCutPoints))) {            // Select split points for the left and right subsets      left = cutPointsForSubset(instances, attIndex, first, bestIndex + 1);      right = cutPointsForSubset(instances, attIndex, 				 bestIndex + 1, lastPlusOne);            // Merge cutpoints and return them      if ((left == null) && (right) == null) {	cutPoints = new double[1];	cutPoints[0] = bestCutPoint;      } else if (right == null) {	cutPoints = new double[left.length + 1];	System.arraycopy(left, 0, cutPoints, 0, left.length);	cutPoints[left.length] = bestCutPoint;      } else if (left == null) {	cutPoints = new double[1 + right.length];	cutPoints[0] = bestCutPoint;	System.arraycopy(right, 0, cutPoints, 1, right.length);      } else {	cutPoints = new double[left.length + right.length + 1];	System.arraycopy(left, 0, cutPoints, 0, left.length);	cutPoints[left.length] = bestCutPoint;	System.arraycopy(right, 0, cutPoints, left.length + 1, right.length);      }            return cutPoints;    } else      return null;  }   /**   * Set the output format. Takes the currently defined cutpoints and    * m_InputFormat and calls setOutputFormat(Instances) appropriately.   */  protected void setOutputFormat() {    if (m_CutPoints == null) {      setOutputFormat(null);      return;    }    FastVector attributes = new FastVector(getInputFormat().numAttributes());    int classIndex = getInputFormat().classIndex();    for(int i = 0; i < getInputFormat().numAttributes(); i++) {      if ((m_DiscretizeCols.isInRange(i)) 	  && (getInputFormat().attribute(i).isNumeric())) {	if (!m_MakeBinary) {	  FastVector attribValues = new FastVector(1);	  if (m_CutPoints[i] == null) {	    attribValues.addElement("'All'");	  } else {	    for(int j = 0; j <= m_CutPoints[i].length; j++) {	      if (j == 0) {		attribValues.addElement("'(-inf-"			+ Utils.doubleToString(m_CutPoints[i][j], 6) + "]'");	      } else if (j == m_CutPoints[i].length) {		attribValues.addElement("'("			+ Utils.doubleToString(m_CutPoints[i][j - 1], 6) 					+ "-inf)'");	      } else {		attribValues.addElement("'("			+ Utils.doubleToString(m_CutPoints[i][j - 1], 6) + "-"			+ Utils.doubleToString(m_CutPoints[i][j], 6) + "]'");	      }	    }	  }	  attributes.addElement(new Attribute(getInputFormat().					      attribute(i).name(),					      attribValues));	} else {	  if (m_CutPoints[i] == null) {	    FastVector attribValues = new FastVector(1);	    attribValues.addElement("'All'");	    attributes.addElement(new Attribute(getInputFormat().						attribute(i).name(),						attribValues));	  } else {	    if (i < getInputFormat().classIndex()) {	      classIndex += m_CutPoints[i].length - 1;	    }	    for(int j = 0; j < m_CutPoints[i].length; j++) {	      FastVector attribValues = new FastVector(2);	      attribValues.addElement("'(-inf-"		      + Utils.doubleToString(m_CutPoints[i][j], 6) + "]'");	      attribValues.addElement("'("		      + Utils.doubleToString(m_CutPoints[i][j], 6) + "-inf)'");	      attributes.addElement(new Attribute(getInputFormat().						  attribute(i).name(),						  attribValues));	    }	  }	}      } else {	attributes.addElement(getInputFormat().attribute(i).copy());      }    }    Instances outputFormat =       new Instances(getInputFormat().relationName(), attributes, 0);    outputFormat.setClassIndex(classIndex);    setOutputFormat(outputFormat);  }  /**   * Convert a single instance over. The converted instance is added to    * the end of the output queue.   *   * @param instance the instance to convert   */  protected void convertInstance(Instance instance) {    int index = 0;    double [] vals = new double [outputFormatPeek().numAttributes()];    // Copy and convert the values    for(int i = 0; i < getInputFormat().numAttributes(); i++) {      if (m_DiscretizeCols.isInRange(i) && 	  getInputFormat().attribute(i).isNumeric()) {	int j;	double currentVal = instance.value(i);	if (m_CutPoints[i] == null) {	  if (instance.isMissing(i)) {	    vals[index] = Instance.missingValue();	  } else {	    vals[index] = 0;	  }	  index++;	} else {	  if (!m_MakeBinary) {	    if (instance.isMissing(i)) {	      vals[index] = Instance.missingValue();	    } else {	      for (j = 0; j < m_CutPoints[i].length; j++) {		if (currentVal <= m_CutPoints[i][j]) {		  break;		}	      }              vals[index] = j;	    }	    index++;	  } else {	    for (j = 0; j < m_CutPoints[i].length; j++) {	      if (instance.isMissing(i)) {                vals[index] = Instance.missingValue();	      } else if (currentVal <= m_CutPoints[i][j]) {                vals[index] = 0;	      } else {                vals[index] = 1;	      }	      index++;	    }	  }   	}      } else {        vals[index] = instance.value(i);	index++;      }    }        Instance inst = null;    if (instance instanceof SparseInstance) {      inst = new SparseInstance(instance.weight(), vals);    } else {      inst = new Instance(instance.weight(), vals);    }    copyStringValues(inst, false, instance.dataset(), getInputStringIndex(),                     getOutputFormat(), getOutputStringIndex());    inst.setDataset(getOutputFormat());    push(inst);  }  /**   * Main method for testing this class.   *   * @param argv should contain arguments to the filter: use -h for help   */  public static void main(String [] argv) {    try {      if (Utils.getFlag('b', argv)) { 	Filter.batchFilterFile(new Discretize(), argv);      } else {	Filter.filterFile(new Discretize(), argv);      }    } catch (Exception ex) {      System.out.println(ex.getMessage());    }  }}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -