📄 discretize.java
字号:
* 1. <br> * eg: first-3,5,6-last * @exception IllegalArgumentException if an invalid range list is supplied */ public void setAttributeIndices(String rangeList) { m_DiscretizeCols.setRanges(rangeList); } /** * Sets which attributes are to be Discretized (only numeric * attributes among the selection will be Discretized). * * @param attributes an array containing indexes of attributes to Discretize. * Since the array will typically come from a program, attributes are indexed * from 0. * @exception IllegalArgumentException if an invalid set of ranges * is supplied */ public void setAttributeIndicesArray(int [] attributes) { setAttributeIndices(Range.indicesToRangeList(attributes)); } /** * Gets the cut points for an attribute * * @param the index (from 0) of the attribute to get the cut points of * @return an array containing the cutpoints (or null if the * attribute requested isn't being Discretized */ public double [] getCutPoints(int attributeIndex) { if (m_CutPoints == null) { return null; } return m_CutPoints[attributeIndex]; } /** Generate the cutpoints for each attribute */ protected void calculateCutPoints() { Instances copy = null; m_CutPoints = new double [getInputFormat().numAttributes()] []; for(int i = getInputFormat().numAttributes() - 1; i >= 0; i--) { if ((m_DiscretizeCols.isInRange(i)) && (getInputFormat().attribute(i).isNumeric())) { // Use copy to preserve order if (copy == null) { copy = new Instances(getInputFormat()); } calculateCutPointsByMDL(i, copy); } } } /** * Set cutpoints for a single attribute using MDL. * * @param index the index of the attribute to set cutpoints for */ protected void calculateCutPointsByMDL(int index, Instances data) { // Sort instances data.sort(data.attribute(index)); // Find first instances that's missing int firstMissing = data.numInstances(); for (int i = 0; i < data.numInstances(); i++) { if (data.instance(i).isMissing(index)) { firstMissing = i; break; } } m_CutPoints[index] = cutPointsForSubset(data, index, 0, firstMissing); } /** Test using Kononenko's MDL criterion. */ private boolean KononenkosMDL(double[] priorCounts, double[][] bestCounts, double numInstances, int numCutPoints) { double distPrior, instPrior, distAfter = 0, sum, instAfter = 0; double before, after; int numClassesTotal; // Number of classes occuring in the set numClassesTotal = 0; for (int i = 0; i < priorCounts.length; i++) { if (priorCounts[i] > 0) { numClassesTotal++; } } // Encode distribution prior to split distPrior = SpecialFunctions.log2Binomial(numInstances + numClassesTotal - 1, numClassesTotal - 1); // Encode instances prior to split. instPrior = SpecialFunctions.log2Multinomial(numInstances, priorCounts); before = instPrior + distPrior; // Encode distributions and instances after split. for (int i = 0; i < bestCounts.length; i++) { sum = Utils.sum(bestCounts[i]); distAfter += SpecialFunctions.log2Binomial(sum + numClassesTotal - 1, numClassesTotal - 1); instAfter += SpecialFunctions.log2Multinomial(sum, bestCounts[i]); } // Coding cost after split after = Utils.log2(numCutPoints) + distAfter + instAfter; // Check if split is to be accepted return (Utils.gr(before, after)); } /** Test using Fayyad and Irani's MDL criterion. */ private boolean FayyadAndIranisMDL(double[] priorCounts, double[][] bestCounts, double numInstances, int numCutPoints) { double priorEntropy, entropy, gain; double entropyLeft, entropyRight, delta; int numClassesTotal, numClassesRight, numClassesLeft; // Compute entropy before split. priorEntropy = ContingencyTables.entropy(priorCounts); // Compute entropy after split. entropy = ContingencyTables.entropyConditionedOnRows(bestCounts); // Compute information gain. gain = priorEntropy - entropy; // Number of classes occuring in the set numClassesTotal = 0; for (int i = 0; i < priorCounts.length; i++) { if (priorCounts[i] > 0) { numClassesTotal++; } } // Number of classes occuring in the left subset numClassesLeft = 0; for (int i = 0; i < bestCounts[0].length; i++) { if (bestCounts[0][i] > 0) { numClassesLeft++; } } // Number of classes occuring in the right subset numClassesRight = 0; for (int i = 0; i < bestCounts[1].length; i++) { if (bestCounts[1][i] > 0) { numClassesRight++; } } // Entropy of the left and the right subsets entropyLeft = ContingencyTables.entropy(bestCounts[0]); entropyRight = ContingencyTables.entropy(bestCounts[1]); // Compute terms for MDL formula delta = Utils.log2(Math.pow(3, numClassesTotal) - 2) - (((double) numClassesTotal * priorEntropy) - (numClassesRight * entropyRight) - (numClassesLeft * entropyLeft)); // Check if split is to be accepted return (Utils.gr(gain, (Utils.log2(numCutPoints) + delta) / (double)numInstances)); } /** Selects cutpoints for sorted subset. */ private double[] cutPointsForSubset(Instances instances, int attIndex, int first, int lastPlusOne) { double[][] counts, bestCounts; double[] priorCounts, left, right, cutPoints; double currentCutPoint = -Double.MAX_VALUE, bestCutPoint = -1, currentEntropy, bestEntropy, priorEntropy, gain; int bestIndex = -1, numInstances = 0, numCutPoints = 0; // Compute number of instances in set if ((lastPlusOne - first) < 2) { return null; } // Compute class counts. counts = new double[2][instances.numClasses()]; for (int i = first; i < lastPlusOne; i++) { numInstances += instances.instance(i).weight(); counts[1][(int)instances.instance(i).classValue()] += instances.instance(i).weight(); } // Save prior counts priorCounts = new double[instances.numClasses()]; System.arraycopy(counts[1], 0, priorCounts, 0, instances.numClasses()); // Entropy of the full set priorEntropy = ContingencyTables.entropy(priorCounts); bestEntropy = priorEntropy; // Find best entropy. bestCounts = new double[2][instances.numClasses()]; for (int i = first; i < (lastPlusOne - 1); i++) { counts[0][(int)instances.instance(i).classValue()] += instances.instance(i).weight(); counts[1][(int)instances.instance(i).classValue()] -= instances.instance(i).weight(); if (Utils.sm(instances.instance(i).value(attIndex), instances.instance(i + 1).value(attIndex))) { currentCutPoint = instances.instance(i).value(attIndex); //+ //instances.instance(i + 1).value(attIndex)) / 2.0; currentEntropy = ContingencyTables.entropyConditionedOnRows(counts); if (Utils.sm(currentEntropy, bestEntropy)) { bestCutPoint = currentCutPoint; bestEntropy = currentEntropy; bestIndex = i; System.arraycopy(counts[0], 0, bestCounts[0], 0, instances.numClasses()); System.arraycopy(counts[1], 0, bestCounts[1], 0, instances.numClasses()); } numCutPoints++; } } // Use worse encoding? if (!m_UseBetterEncoding) { numCutPoints = (lastPlusOne - first) - 1; } // Checks if gain is zero gain = priorEntropy - bestEntropy; if (Utils.eq(gain, 0)) { return null; } // Check if split is to be accepted if ((m_UseKononenko && KononenkosMDL(priorCounts, bestCounts, numInstances, numCutPoints)) || (!m_UseKononenko && FayyadAndIranisMDL(priorCounts, bestCounts, numInstances, numCutPoints))) { // Select split points for the left and right subsets left = cutPointsForSubset(instances, attIndex, first, bestIndex + 1); right = cutPointsForSubset(instances, attIndex, bestIndex + 1, lastPlusOne); // Merge cutpoints and return them if ((left == null) && (right) == null) { cutPoints = new double[1]; cutPoints[0] = bestCutPoint; } else if (right == null) { cutPoints = new double[left.length + 1]; System.arraycopy(left, 0, cutPoints, 0, left.length); cutPoints[left.length] = bestCutPoint; } else if (left == null) { cutPoints = new double[1 + right.length]; cutPoints[0] = bestCutPoint; System.arraycopy(right, 0, cutPoints, 1, right.length); } else { cutPoints = new double[left.length + right.length + 1]; System.arraycopy(left, 0, cutPoints, 0, left.length); cutPoints[left.length] = bestCutPoint; System.arraycopy(right, 0, cutPoints, left.length + 1, right.length); } return cutPoints; } else return null; } /** * Set the output format. Takes the currently defined cutpoints and * m_InputFormat and calls setOutputFormat(Instances) appropriately. */ protected void setOutputFormat() { if (m_CutPoints == null) { setOutputFormat(null); return; } FastVector attributes = new FastVector(getInputFormat().numAttributes()); int classIndex = getInputFormat().classIndex(); for(int i = 0; i < getInputFormat().numAttributes(); i++) { if ((m_DiscretizeCols.isInRange(i)) && (getInputFormat().attribute(i).isNumeric())) { if (!m_MakeBinary) { FastVector attribValues = new FastVector(1); if (m_CutPoints[i] == null) { attribValues.addElement("'All'"); } else { for(int j = 0; j <= m_CutPoints[i].length; j++) { if (j == 0) { attribValues.addElement("'(-inf-" + Utils.doubleToString(m_CutPoints[i][j], 6) + "]'"); } else if (j == m_CutPoints[i].length) { attribValues.addElement("'(" + Utils.doubleToString(m_CutPoints[i][j - 1], 6) + "-inf)'"); } else { attribValues.addElement("'(" + Utils.doubleToString(m_CutPoints[i][j - 1], 6) + "-" + Utils.doubleToString(m_CutPoints[i][j], 6) + "]'"); } } } attributes.addElement(new Attribute(getInputFormat(). attribute(i).name(), attribValues)); } else { if (m_CutPoints[i] == null) { FastVector attribValues = new FastVector(1); attribValues.addElement("'All'"); attributes.addElement(new Attribute(getInputFormat(). attribute(i).name(), attribValues)); } else { if (i < getInputFormat().classIndex()) { classIndex += m_CutPoints[i].length - 1; } for(int j = 0; j < m_CutPoints[i].length; j++) { FastVector attribValues = new FastVector(2); attribValues.addElement("'(-inf-" + Utils.doubleToString(m_CutPoints[i][j], 6) + "]'"); attribValues.addElement("'(" + Utils.doubleToString(m_CutPoints[i][j], 6) + "-inf)'"); attributes.addElement(new Attribute(getInputFormat(). attribute(i).name(), attribValues)); } } } } else { attributes.addElement(getInputFormat().attribute(i).copy()); } } Instances outputFormat = new Instances(getInputFormat().relationName(), attributes, 0); outputFormat.setClassIndex(classIndex); setOutputFormat(outputFormat); } /** * Convert a single instance over. The converted instance is added to * the end of the output queue. * * @param instance the instance to convert */ protected void convertInstance(Instance instance) { int index = 0; double [] vals = new double [outputFormatPeek().numAttributes()]; // Copy and convert the values for(int i = 0; i < getInputFormat().numAttributes(); i++) { if (m_DiscretizeCols.isInRange(i) && getInputFormat().attribute(i).isNumeric()) { int j; double currentVal = instance.value(i); if (m_CutPoints[i] == null) { if (instance.isMissing(i)) { vals[index] = Instance.missingValue(); } else { vals[index] = 0; } index++; } else { if (!m_MakeBinary) { if (instance.isMissing(i)) { vals[index] = Instance.missingValue(); } else { for (j = 0; j < m_CutPoints[i].length; j++) { if (currentVal <= m_CutPoints[i][j]) { break; } } vals[index] = j; } index++; } else { for (j = 0; j < m_CutPoints[i].length; j++) { if (instance.isMissing(i)) { vals[index] = Instance.missingValue(); } else if (currentVal <= m_CutPoints[i][j]) { vals[index] = 0; } else { vals[index] = 1; } index++; } } } } else { vals[index] = instance.value(i); index++; } } Instance inst = null; if (instance instanceof SparseInstance) { inst = new SparseInstance(instance.weight(), vals); } else { inst = new Instance(instance.weight(), vals); } copyStringValues(inst, false, instance.dataset(), getInputStringIndex(), getOutputFormat(), getOutputStringIndex()); inst.setDataset(getOutputFormat()); push(inst); } /** * Main method for testing this class. * * @param argv should contain arguments to the filter: use -h for help */ public static void main(String [] argv) { try { if (Utils.getFlag('b', argv)) { Filter.batchFilterFile(new Discretize(), argv); } else { Filter.filterFile(new Discretize(), argv); } } catch (Exception ex) { System.out.println(ex.getMessage()); } }}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -