📄 discretize.java
字号:
/* * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. *//* * Discretize.java * Copyright (C) 1999 Eibe Frank,Len Trigg * */package weka.filters.supervised.attribute;import weka.filters.*;import java.io.*;import java.util.*;import weka.core.*;/** * An instance filter that discretizes a range of numeric attributes in * the dataset into nominal attributes. Discretization is by * Fayyad & Irani's MDL method (the default).<p> * * Valid filter-specific options are: <p> * * -R col1,col2-col4,... <br> * Specifies list of columns to Discretize. First * and last are valid indexes. (default: none) <p> * * -V <br> * Invert matching sense.<p> * * -D <br> * Make binary nominal attributes. <p> * * -E <br> * Use better encoding of split point for MDL. <p> * * -K <br> * Use Kononeko's MDL criterion. <p> * * @author Len Trigg (trigg@cs.waikato.ac.nz) * @author Eibe Frank (eibe@cs.waikato.ac.nz) * @version $Revision: 1.1.1.1 $ */public class Discretize extends Filter implements SupervisedFilter, OptionHandler, WeightedInstancesHandler { /** Stores which columns to Discretize */ protected Range m_DiscretizeCols = new Range(); /** Store the current cutpoints */ protected double [][] m_CutPoints = null; /** Output binary attributes for discretized attributes. */ protected boolean m_MakeBinary = false; /** Use better encoding of split point for MDL. */ protected boolean m_UseBetterEncoding = false; /** Use Kononenko's MDL criterion instead of Fayyad et al.'s */ protected boolean m_UseKononenko = false; /** Constructor - initialises the filter */ public Discretize() { setAttributeIndices("first-last"); } /** * Gets an enumeration describing the available options. * * @return an enumeration of all the available options. */ public Enumeration listOptions() { Vector newVector = new Vector(7); newVector.addElement(new Option( "\tSpecifies list of columns to Discretize. First" + " and last are valid indexes.\n" + "\t(default none)", "R", 1, "-R <col1,col2-col4,...>")); newVector.addElement(new Option( "\tInvert matching sense of column indexes.", "V", 0, "-V")); newVector.addElement(new Option( "\tOutput binary attributes for discretized attributes.", "D", 0, "-D")); newVector.addElement(new Option( "\tUse better encoding of split point for MDL.", "E", 0, "-E")); newVector.addElement(new Option( "\tUse Kononenko's MDL criterion.", "K", 0, "-K")); return newVector.elements(); } /** * Parses the options for this object. Valid options are: <p> * * -R col1,col2-col4,... <br> * Specifies list of columns to Discretize. First * and last are valid indexes. (default none) <p> * * -V <br> * Invert matching sense.<p> * * -D <br> * Make binary nominal attributes. <p> * * -E <br> * Use better encoding of split point for MDL. <p> * * -K <br> * Use Kononeko's MDL criterion. <p> * * @param options the list of options as an array of strings * @exception Exception if an option is not supported */ public void setOptions(String[] options) throws Exception { setMakeBinary(Utils.getFlag('D', options)); setUseBetterEncoding(Utils.getFlag('E', options)); setUseKononenko(Utils.getFlag('K', options)); setInvertSelection(Utils.getFlag('V', options)); String convertList = Utils.getOption('R', options); if (convertList.length() != 0) { setAttributeIndices(convertList); } else { setAttributeIndices("first-last"); } if (getInputFormat() != null) { setInputFormat(getInputFormat()); } } /** * Gets the current settings of the filter. * * @return an array of strings suitable for passing to setOptions */ public String [] getOptions() { String [] options = new String [12]; int current = 0; if (getMakeBinary()) { options[current++] = "-D"; } if (getUseBetterEncoding()) { options[current++] = "-E"; } if (getUseKononenko()) { options[current++] = "-K"; } if (getInvertSelection()) { options[current++] = "-V"; } if (!getAttributeIndices().equals("")) { options[current++] = "-R"; options[current++] = getAttributeIndices(); } while (current < options.length) { options[current++] = ""; } return options; } /** * Sets the format of the input instances. * * @param instanceInfo an Instances object containing the input instance * structure (any instances contained in the object are ignored - only the * structure is required). * @return true if the outputFormat may be collected immediately * @exception Exception if the input format can't be set successfully */ public boolean setInputFormat(Instances instanceInfo) throws Exception { super.setInputFormat(instanceInfo); m_DiscretizeCols.setUpper(instanceInfo.numAttributes() - 1); m_CutPoints = null; if (instanceInfo.classIndex() < 0) { throw new UnassignedClassException("Cannot use class-based discretization: " + "no class assigned to the dataset"); } if (!instanceInfo.classAttribute().isNominal()) { throw new UnsupportedClassTypeException("Supervised discretization not possible:" + " class is not nominal!"); } // If we implement loading cutfiles, then load //them here and set the output format return false; } /** * Input an instance for filtering. Ordinarily the instance is processed * and made available for output immediately. Some filters require all * instances be read before producing output. * * @param instance the input instance * @return true if the filtered instance may now be * collected with output(). * @exception IllegalStateException if no input format has been defined. */ public boolean input(Instance instance) { if (getInputFormat() == null) { throw new IllegalStateException("No input instance format defined"); } if (m_NewBatch) { resetQueue(); m_NewBatch = false; } if (m_CutPoints != null) { convertInstance(instance); return true; } bufferInput(instance); return false; } /** * Signifies that this batch of input to the filter is finished. If the * filter requires all instances prior to filtering, output() may now * be called to retrieve the filtered instances. * * @return true if there are instances pending output * @exception IllegalStateException if no input structure has been defined */ public boolean batchFinished() { if (getInputFormat() == null) { throw new IllegalStateException("No input instance format defined"); } if (m_CutPoints == null) { calculateCutPoints(); setOutputFormat(); // If we implement saving cutfiles, save the cuts here // Convert pending input instances for(int i = 0; i < getInputFormat().numInstances(); i++) { convertInstance(getInputFormat().instance(i)); } } flushInput(); m_NewBatch = true; return (numPendingOutput() != 0); } /** * Returns a string describing this filter * * @return a description of the filter suitable for * displaying in the explorer/experimenter gui */ public String globalInfo() { return "An instance filter that discretizes a range of numeric" + " attributes in the dataset into nominal attributes." + " Discretization is by Fayyad & Irani's MDL method (the default)."; } /** * Returns the tip text for this property * * @return tip text for this property suitable for * displaying in the explorer/experimenter gui */ public String makeBinaryTipText() { return "Make resulting attributes binary."; } /** * Gets whether binary attributes should be made for discretized ones. * * @return true if attributes will be binarized */ public boolean getMakeBinary() { return m_MakeBinary; } /** * Sets whether binary attributes should be made for discretized ones. * * @param makeBinary if binary attributes are to be made */ public void setMakeBinary(boolean makeBinary) { m_MakeBinary = makeBinary; } /** * Returns the tip text for this property * * @return tip text for this property suitable for * displaying in the explorer/experimenter gui */ public String useKononenkoTipText() { return "Use Kononenko's MDL criterion. If set to false" + " uses the Fayyad & Irani criterion."; } /** * Gets whether Kononenko's MDL criterion is to be used. * * @return true if Kononenko's criterion will be used. */ public boolean getUseKononenko() { return m_UseKononenko; } /** * Sets whether Kononenko's MDL criterion is to be used. * * @param useKon true if Kononenko's one is to be used */ public void setUseKononenko(boolean useKon) { m_UseKononenko = useKon; } /** * Returns the tip text for this property * * @return tip text for this property suitable for * displaying in the explorer/experimenter gui */ public String useBetterEncodingTipText() { return "Uses a more efficient split point encoding."; } /** * Gets whether better encoding is to be used for MDL. * * @return true if the better MDL encoding will be used */ public boolean getUseBetterEncoding() { return m_UseBetterEncoding; } /** * Sets whether better encoding is to be used for MDL. * * @param useBetterEncoding true if better encoding to be used. */ public void setUseBetterEncoding(boolean useBetterEncoding) { m_UseBetterEncoding = useBetterEncoding; } /** * Returns the tip text for this property * * @return tip text for this property suitable for * displaying in the explorer/experimenter gui */ public String invertSelectionTipText() { return "Set attribute selection mode. If false, only selected" + " (numeric) attributes in the range will be discretized; if" + " true, only non-selected attributes will be discretized."; } /** * Gets whether the supplied columns are to be removed or kept * * @return true if the supplied columns will be kept */ public boolean getInvertSelection() { return m_DiscretizeCols.getInvert(); } /** * Sets whether selected columns should be removed or kept. If true the * selected columns are kept and unselected columns are deleted. If false * selected columns are deleted and unselected columns are kept. * * @param invert the new invert setting */ public void setInvertSelection(boolean invert) { m_DiscretizeCols.setInvert(invert); } /** * Returns the tip text for this property * * @return tip text for this property suitable for * displaying in the explorer/experimenter gui */ public String attributeIndicesTipText() { return "Specify range of attributes to act on." + " This is a comma separated list of attribute indices, with" + " \"first\" and \"last\" valid values. Specify an inclusive" + " range with \"-\". E.g: \"first-3,5,6-10,last\"."; } /** * Gets the current range selection * * @return a string containing a comma separated list of ranges */ public String getAttributeIndices() { return m_DiscretizeCols.getRanges(); } /** * Sets which attributes are to be Discretized (only numeric * attributes among the selection will be Discretized). * * @param rangeList a string representing the list of attributes. Since * the string will typically come from a user, attributes are indexed from
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -