⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 geneticsearch.java

📁 wekaUT是 university texas austin 开发的基于weka的半指导学习(semi supervised learning)的分类器
💻 JAVA
📖 第 1 页 / 共 3 页
字号:
   * in its toString() method.   * @param startSet a string containing a list of attributes (and or ranges),   * eg. 1,2,6,10-15.   * @exception Exception if start set can't be set.   */  public void setStartSet (String startSet) throws Exception {    m_startRange.setRanges(startSet);  }  /**   * Returns a list of attributes (and or attribute ranges) as a String   * @return a list of attributes (and or attribute ranges)   */  public String getStartSet () {    return m_startRange.getRanges();  }  /**   * Returns the tip text for this property   * @return tip text for this property suitable for   * displaying in the explorer/experimenter gui   */  public String seedTipText() {    return "Set the random seed.";  }  /**   * set the seed for random number generation   * @param s seed value   */  public void setSeed(int s) {    m_seed = s;  }  /**   * get the value of the random number generator's seed   * @return the seed for random number generation   */  public int getSeed() {    return m_seed;  }    /**   * Returns the tip text for this property   * @return tip text for this property suitable for   * displaying in the explorer/experimenter gui   */  public String reportFrequencyTipText() {    return "Set how frequently reports are generated. Default is equal to "      +"the number of generations meaning that a report will be printed for "      +"initial and final generations. Setting the value to 5 will result in "      +"a report being printed every 5 generations.";  }  /**   * set how often reports are generated   * @param f generate reports every f generations   */  public void setReportFrequency(int f) {    m_reportFrequency = f;  }  /**   * get how often repports are generated   * @return how often reports are generated   */  public int getReportFrequency() {    return m_reportFrequency;  }  /**   * Returns the tip text for this property   * @return tip text for this property suitable for   * displaying in the explorer/experimenter gui   */  public String mutationProbTipText() {    return "Set the probability of mutation occuring.";  }  /**   * set the probability of mutation   * @param m the probability for mutation occuring   */  public void setMutationProb(double m) {    m_pMutation = m;  }  /**   * get the probability of mutation   * @return the probability of mutation occuring   */  public double getMutationProb() {    return m_pMutation;  }  /**   * Returns the tip text for this property   * @return tip text for this property suitable for   * displaying in the explorer/experimenter gui   */  public String crossoverProbTipText() {    return "Set the probability of crossover. This is the probability that "      +"two population members will exchange genetic material.";   }  /**   * set the probability of crossover   * @param c the probability that two population members will exchange   * genetic material   */  public void setCrossoverProb(double c) {    m_pCrossover = c;  }  /**   * get the probability of crossover   * @return the probability of crossover   */  public double getCrossoverProb() {    return m_pCrossover;  }  /**   * Returns the tip text for this property   * @return tip text for this property suitable for   * displaying in the explorer/experimenter gui   */  public String maxGenerationsTipText() {    return "Set the number of generations to evaluate.";  }  /**   * set the number of generations to evaluate   * @param m the number of generations   */  public void setMaxGenerations(int m) {    m_maxGenerations = m;  }  /**   * get the number of generations   * @return the maximum number of generations   */  public int getMaxGenerations() {    return m_maxGenerations;  }  /**   * Returns the tip text for this property   * @return tip text for this property suitable for   * displaying in the explorer/experimenter gui   */  public String populationSizeTipText() {    return "Set the population size. This is the number of individuals "      +"(attribute sets) in the population.";  }  /**   * set the population size   * @param p the size of the population   */  public void setPopulationSize(int p) {    m_popSize = p;  }  /**   * get the size of the population   * @return the population size   */  public int getPopulationSize() {    return m_popSize;  }  /**   * Returns a string describing this search method   * @return a description of the search suitable for   * displaying in the explorer/experimenter gui   */  public String globalInfo() {    return "GeneticSearch :\n\nPerforms a search using the simple genetic "      +"algorithm described in Goldberg (1989).\n";  }  /**   * Constructor. Make a new GeneticSearch object   */  public GeneticSearch() {    resetOptions();  }  /**   * converts the array of starting attributes to a string. This is   * used by getOptions to return the actual attributes specified   * as the starting set. This is better than using m_startRanges.getRanges()   * as the same start set can be specified in different ways from the   * command line---eg 1,2,3 == 1-3. This is to ensure that stuff that   * is stored in a database is comparable.   * @return a comma seperated list of individual attribute numbers as a String   */  private String startSetToString() {    StringBuffer FString = new StringBuffer();    boolean didPrint;        if (m_starting == null) {      return getStartSet();    }    for (int i = 0; i < m_starting.length; i++) {      didPrint = false;            if ((m_hasClass == false) || 	  (m_hasClass == true && i != m_classIndex)) {	FString.append((m_starting[i] + 1));	didPrint = true;      }            if (i == (m_starting.length - 1)) {	FString.append("");      }      else {	if (didPrint) {	  FString.append(",");	  }      }    }    return FString.toString();  }  /**   * returns a description of the search   * @return a description of the search as a String   */  public String toString() {    StringBuffer GAString = new StringBuffer();    GAString.append("\tGenetic search.\n\tStart set: ");    if (m_starting == null) {      GAString.append("no attributes\n");    }    else {      GAString.append(startSetToString()+"\n");    }    GAString.append("\tPopulation size: "+m_popSize);    GAString.append("\n\tNumber of generations: "+m_maxGenerations);    GAString.append("\n\tProbability of crossover: "		+Utils.doubleToString(m_pCrossover,6,3));    GAString.append("\n\tProbability of mutation: "		+Utils.doubleToString(m_pMutation,6,3));    GAString.append("\n\tReport frequency: "+m_reportFrequency);    GAString.append("\n\tRandom number seed: "+m_seed+"\n");    GAString.append(m_generationReports.toString());    return GAString.toString();  }  /**   * Searches the attribute subset space using a genetic algorithm.   *   * @param ASEvaluator the attribute evaluator to guide the search   * @param data the training instances.   * @return an array (not necessarily ordered) of selected attribute indexes   * @exception Exception if the search can't be completed   */   public int[] search (ASEvaluation ASEval, Instances data)    throws Exception {     m_best = null;     m_generationReports = new StringBuffer();     if (!(ASEval instanceof SubsetEvaluator)) {       throw  new Exception(ASEval.getClass().getName() 			    + " is not a " 			    + "Subset evaluator!");     }         if (ASEval instanceof UnsupervisedSubsetEvaluator) {      m_hasClass = false;    }    else {      m_hasClass = true;      m_classIndex = data.classIndex();    }    SubsetEvaluator ASEvaluator = (SubsetEvaluator)ASEval;    m_numAttribs = data.numAttributes();    m_startRange.setUpper(m_numAttribs-1);    if (!(getStartSet().equals(""))) {      m_starting = m_startRange.getSelection();    }    // initial random population    m_lookupTable = new Hashtable(m_lookupTableSize);    m_random = new Random(m_seed);    m_population = new GABitSet [m_popSize];    // set up random initial population    initPopulation();    evaluatePopulation(ASEvaluator);    populationStatistics();    scalePopulation();    checkBest();    m_generationReports.append(populationReport(0));    boolean converged;    for (int i=1;i<=m_maxGenerations;i++) {      generation();      evaluatePopulation(ASEvaluator);      populationStatistics();      scalePopulation();      // find the best pop member and check for convergence      converged = checkBest();      if ((i == m_maxGenerations) || 	  ((i % m_reportFrequency) == 0) ||	  (converged == true)) {	m_generationReports.append(populationReport(i));	if (converged == true) {	  break;	}      }    }    return attributeList(m_best.getChromosome());   }  /**   * converts a BitSet into a list of attribute indexes    * @param group the BitSet to convert   * @return an array of attribute indexes   **/  private int[] attributeList (BitSet group) {    int count = 0;    // count how many were selected    for (int i = 0; i < m_numAttribs; i++) {      if (group.get(i)) {	count++;      }    }    int[] list = new int[count];    count = 0;    for (int i = 0; i < m_numAttribs; i++) {      if (group.get(i)) {	list[count++] = i;      }    }    return  list;  }  /**   * checks to see if any population members in the current   * population are better than the best found so far. Also checks   * to see if the search has converged---that is there is no difference   * in fitness between the best and worse population member   * @return true is the search has converged   * @exception Exception if something goes wrong   */  private boolean checkBest() throws Exception {    int i,j,count,lowestCount = m_numAttribs;    double b = -Double.MAX_VALUE;    GABitSet localbest = null;    BitSet temp;    boolean converged = false;    int oldcount = Integer.MAX_VALUE;    if (m_maxFitness - m_minFitness > 0) {      // find the best in this population      for (i=0;i<m_popSize;i++) {	if (m_population[i].getObjective() > b) {	  b = m_population[i].getObjective();	  localbest = m_population[i];	  oldcount = countFeatures(localbest.getChromosome());	} else if (Utils.eq(m_population[i].getObjective(), b)) {	  // see if it contains fewer features	  count = countFeatures(m_population[i].getChromosome());	  if (count < oldcount) {	    b = m_population[i].getObjective();	    localbest = m_population[i];	    oldcount = count;	  }	}      }    } else {      // look for the smallest subset      for (i=0;i<m_popSize;i++) {	temp = m_population[i].getChromosome();	count = countFeatures(temp);;	if (count < lowestCount) {	  lowestCount = count;	  localbest = m_population[i];

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -