📄 classifiersubseteval.java
字号:
/* * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. *//* * ClassifierSubsetEval.java * Copyright (C) 2000 Mark Hall * */package weka.attributeSelection;import java.io.*;import java.util.*;import weka.core.*;import weka.classifiers.*;import weka.classifiers.rules.ZeroR;import weka.classifiers.Evaluation;import weka.filters.Filter;import weka.filters.unsupervised.attribute.Remove;/** * Classifier subset evaluator. Uses a classifier to estimate the "merit" * of a set of attributes. * * Valid options are:<p> * * -B <classifier> <br> * Class name of the classifier to use for accuracy estimation. * Place any classifier options last on the command line following a * "--". Eg -B weka.classifiers.bayes.NaiveBayes ... -- -K <p> * * -T <br> * Use the training data for accuracy estimation rather than a hold out/ * test set. <p> * * -H <filename> <br> * The file containing hold out/test instances to use for accuracy estimation * <p> * * @author Mark Hall (mhall@cs.waikato.ac.nz) * @version $Revision: 1.1.1.1 $ */public class ClassifierSubsetEval extends HoldOutSubsetEvaluator implements OptionHandler, ErrorBasedMeritEvaluator { /** training instances */ private Instances m_trainingInstances; /** class index */ private int m_classIndex; /** number of attributes in the training data */ private int m_numAttribs; /** number of training instances */ private int m_numInstances; /** holds the classifier to use for error estimates */ private Classifier m_Classifier = new ZeroR(); /** holds the evaluation object to use for evaluating the classifier */ private Evaluation m_Evaluation; /** the file that containts hold out/test instances */ private File m_holdOutFile = new File("Click to set hold out or " +"test instances"); /** the instances to test on */ private Instances m_holdOutInstances = null; /** evaluate on training data rather than seperate hold out/test set */ private boolean m_useTraining = false; /** * Returns a string describing this attribute evaluator * @return a description of the evaluator suitable for * displaying in the explorer/experimenter gui */ public String globalInfo() { return "Evaluates attribute subsets on training data or a seperate " +"hold out testing set"; } /** * Returns an enumeration describing the available options. <p> * * -B <classifier> <br> * Class name of the classifier to use for accuracy estimation. * Place any classifier options last on the command line following a * "--". Eg -B weka.classifiers.bayes.NaiveBayes ... -- -K <p> * * -T <br> * Use the training data for accuracy estimation rather than a hold out/ * test set. <p> * * -H <filename> <br> * The file containing hold out/test instances to use for accuracy estimation * <p> * * @return an enumeration of all the available options. **/ public Enumeration listOptions () { Vector newVector = new Vector(3); newVector.addElement(new Option("\tclass name of the classifier to use for" + "\n\taccuracy estimation. Place any" + "\n\tclassifier options LAST on the" + "\n\tcommand line following a \"--\"." + "\n\teg. -C weka.classifiers.bayes.NaiveBayes ... " + "-- -K", "B", 1, "-B <classifier>")); newVector.addElement(new Option("\tUse the training data to estimate" +" accuracy." ,"T",0,"-T")); newVector.addElement(new Option("\tName of the hold out/test set to " +"\n\testimate accuracy on." ,"H", 1,"-H <filename>")); if ((m_Classifier != null) && (m_Classifier instanceof OptionHandler)) { newVector.addElement(new Option("", "", 0, "\nOptions specific to " + "scheme " + m_Classifier.getClass().getName() + ":")); Enumeration enum = ((OptionHandler)m_Classifier).listOptions(); while (enum.hasMoreElements()) { newVector.addElement(enum.nextElement()); } } return newVector.elements(); } /** * Parses a given list of options. * * Valid options are:<p> * * -C <classifier> <br> * Class name of classifier to use for accuracy estimation. * Place any classifier options last on the command line following a * "--". Eg -B weka.classifiers.bayes.NaiveBayes ... -- -K <p> * * -T <br> * Use training data instead of a hold out/test set for accuracy estimation. * <p> * * -H <filname> <br> * Name of the hold out/test set to estimate classifier accuracy on. * <p> * * @param options the list of options as an array of strings * @exception Exception if an option is not supported * **/ public void setOptions (String[] options) throws Exception { String optionString; resetOptions(); optionString = Utils.getOption('B', options); if (optionString.length() == 0) { throw new Exception("A classifier must be specified with -B option"); } setClassifier(Classifier.forName(optionString, Utils.partitionOptions(options))); optionString = Utils.getOption('H',options); if (optionString.length() != 0) { setHoldOutFile(new File(optionString)); } setUseTraining(Utils.getFlag('T',options)); } /** * Returns the tip text for this property * @return tip text for this property suitable for * displaying in the explorer/experimenter gui */ public String classifierTipText() { return "Classifier to use for estimating the accuracy of subsets"; } /** * Set the classifier to use for accuracy estimation * * @param newClassifier the Classifier to use. */ public void setClassifier (Classifier newClassifier) { m_Classifier = newClassifier; } /** * Get the classifier used as the base learner. * * @return the classifier used as the classifier */ public Classifier getClassifier () { return m_Classifier; } /** * Returns the tip text for this property * @return tip text for this property suitable for * displaying in the explorer/experimenter gui */ public String holdOutFileTipText() { return "File containing hold out/test instances."; } /** * Gets the file that holds hold out/test instances. * @return File that contains hold out instances */ public File getHoldOutFile() { return m_holdOutFile; } /** * Set the file that contains hold out/test instances * @param h the hold out file */ public void setHoldOutFile(File h) { m_holdOutFile = h; } /** * Returns the tip text for this property * @return tip text for this property suitable for * displaying in the explorer/experimenter gui */ public String useTrainingTipText() { return "Use training data instead of hold out/test instances."; } /** * Get if training data is to be used instead of hold out/test data * @return true if training data is to be used instead of hold out data */ public boolean getUseTraining() { return m_useTraining; } /** * Set if training data is to be used instead of hold out/test data * @return true if training data is to be used instead of hold out data */ public void setUseTraining(boolean t) { m_useTraining = t; } /** * Gets the current settings of ClassifierSubsetEval * * @return an array of strings suitable for passing to setOptions() */ public String[] getOptions () { String[] classifierOptions = new String[0]; if ((m_Classifier != null) && (m_Classifier instanceof OptionHandler)) { classifierOptions = ((OptionHandler)m_Classifier).getOptions(); } String[] options = new String[6 + classifierOptions.length]; int current = 0; if (getClassifier() != null) { options[current++] = "-B"; options[current++] = getClassifier().getClass().getName(); } if (getUseTraining()) { options[current++] = "-T"; } options[current++] = "-H"; options[current++] = getHoldOutFile().getPath(); options[current++] = "--"; System.arraycopy(classifierOptions, 0, options, current, classifierOptions.length); current += classifierOptions.length; while (current < options.length) { options[current++] = ""; } return options; } /** * Generates a attribute evaluator. Has to initialize all fields of the * evaluator that are not being set via options. * * @param data set of instances serving as training data * @exception Exception if the evaluator has not been * generated successfully */ public void buildEvaluator (Instances data) throws Exception { if (data.checkForStringAttributes()) { throw new UnsupportedAttributeTypeException("Can't handle string attributes!"); } m_trainingInstances = data; m_classIndex = m_trainingInstances.classIndex(); m_numAttribs = m_trainingInstances.numAttributes();
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -