📄 randomsearch.java
字号:
/* * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. *//* * RandomSearch.java * Copyright (C) 1999 Mark Hall * */package weka.attributeSelection;import java.io.*;import java.util.*;import weka.core.*;/** * Class for performing a random search. <p> * * Valid options are: <p> * * -P <start set> <br> * Specify a starting set of attributes. Eg 1,4,7-9. <p> * * -F <percent) <br> * Percentage of the search space to consider. (default = 25). <p> * * -V <br> * Verbose output. Output new best subsets as the search progresses. <p> * * @author Mark Hall (mhall@cs.waikato.ac.nz) * @version $Revision: 1.1.1.1 $ */public class RandomSearch extends ASSearch implements StartSetHandler, OptionHandler { /** * holds a starting set as an array of attributes. */ private int[] m_starting; /** holds the start set as a range */ private Range m_startRange; /** the best feature set found during the search */ private BitSet m_bestGroup; /** the merit of the best subset found */ private double m_bestMerit; /** * only accept a feature set as being "better" than the best if its * merit is better or equal to the best, and it contains fewer * features than the best (this allows LVF to be implimented). */ private boolean m_onlyConsiderBetterAndSmaller; /** does the data have a class */ private boolean m_hasClass; /** holds the class index */ private int m_classIndex; /** number of attributes in the data */ private int m_numAttribs; /** seed for random number generation */ private int m_seed; /** percentage of the search space to consider */ private double m_searchSize; /** the number of iterations performed */ private int m_iterations; /** random number object */ private Random m_random; /** output new best subsets as the search progresses */ private boolean m_verbose; /** * Returns a string describing this search method * @return a description of the search suitable for * displaying in the explorer/experimenter gui */ public String globalInfo() { return "RandomSearch : \n\nPerforms a Random search in " +"the space of attribute subsets. If no start set is supplied, Random " +"search starts from a random point and reports the best subset found. " +"If a start set is supplied, Random searches randomly for subsets " +"that are as good or better than the start point with the same or " +"or fewer attributes. Using RandomSearch in conjunction with a start " +"set containing all attributes equates to the LVF algorithm of Liu " +"and Setiono (ICML-96).\n"; } /** * Constructor */ public RandomSearch () { resetOptions(); } /** * Returns an enumeration describing the available options. * @return an enumeration of all the available options. **/ public Enumeration listOptions () { Vector newVector = new Vector(3); newVector.addElement(new Option("\tSpecify a starting set of attributes." + "\n\tEg. 1,3,5-7." +"\n\tIf a start point is supplied," +"\n\trandom search evaluates the start" +"\n\tpoint and then randomly looks for" +"\n\tsubsets that are as good as or better" +"\n\tthan the start point with the same" +"\n\tor lower cardinality." ,"P",1 , "-P <start set>")); newVector.addElement(new Option("\tPercent of search space to consider." +"\n\t(default = 25%)." , "F", 1 , "-F <percent> ")); newVector.addElement(new Option("\tOutput subsets as the search progresses." +"\n\t(default = false)." , "V", 0 , "-V")); return newVector.elements(); } /** * Parses a given list of options. * * Valid options are: <p> * * -P <start set> <br> * Specify a starting set of attributes. Eg 1,4,7-9. <p> * * -F <percent) <br> * Percentage of the search space to consider. (default = 25). <p> * * -V <br> * Verbose output. Output new best subsets as the search progresses. <p> * * @param options the list of options as an array of strings * @exception Exception if an option is not supported * **/ public void setOptions (String[] options) throws Exception { String optionString; resetOptions(); optionString = Utils.getOption('P', options); if (optionString.length() != 0) { setStartSet(optionString); } optionString = Utils.getOption('F',options); if (optionString.length() != 0) { setSearchPercent((new Double(optionString)).doubleValue()); } setVerbose(Utils.getFlag('V',options)); } /** * Returns the tip text for this property * @return tip text for this property suitable for * displaying in the explorer/experimenter gui */ public String startSetTipText() { return "Set the start point for the search. This is specified as a comma " +"seperated list off attribute indexes starting at 1. It can include " +"ranges. Eg. 1,2,5-9,17. If specified, Random searches for subsets " +"of attributes that are as good as or better than the start set with " +"the same or lower cardinality."; } /** * Sets a starting set of attributes for the search. It is the * search method's responsibility to report this start set (if any) * in its toString() method. * @param startSet a string containing a list of attributes (and or ranges), * eg. 1,2,6,10-15. "" indicates no start point. * If a start point is supplied, random search evaluates the * start point and then looks for subsets that are as good as or better * than the start point with the same or lower cardinality. * @exception Exception if start set can't be set. */ public void setStartSet (String startSet) throws Exception { m_startRange.setRanges(startSet); } /** * Returns a list of attributes (and or attribute ranges) as a String * @return a list of attributes (and or attribute ranges) */ public String getStartSet () { return m_startRange.getRanges(); } /** * Returns the tip text for this property * @return tip text for this property suitable for * displaying in the explorer/experimenter gui */ public String verboseTipText() { return "Print progress information. Sends progress info to the terminal " +"as the search progresses."; } /** * set whether or not to output new best subsets as the search proceeds * @param v true if output is to be verbose */ public void setVerbose(boolean v) { m_verbose = v; } /** * get whether or not output is verbose * @return true if output is set to verbose */ public boolean getVerbose() { return m_verbose; } /** * Returns the tip text for this property * @return tip text for this property suitable for * displaying in the explorer/experimenter gui */ public String searchPercentTipText() { return "Percentage of the search space to explore."; } /** * set the percentage of the search space to consider * @param p percent of the search space ( 0 < p <= 100) */ public void setSearchPercent(double p) { p = Math.abs(p); if (p == 0) { p = 25; } if (p > 100.0) { p = 100; } m_searchSize = (p/100.0); } /** * get the percentage of the search space to consider * @return the percent of the search space explored */ public double getSearchPercent() { return m_searchSize; } /** * Gets the current settings of RandomSearch. * @return an array of strings suitable for passing to setOptions() */ public String[] getOptions () { String[] options = new String[5]; int current = 0; if (m_verbose) { options[current++] = "-V"; }
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -