⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 randomsearch.java

📁 wekaUT是 university texas austin 开发的基于weka的半指导学习(semi supervised learning)的分类器
💻 JAVA
📖 第 1 页 / 共 2 页
字号:
/* *    This program is free software; you can redistribute it and/or modify *    it under the terms of the GNU General Public License as published by *    the Free Software Foundation; either version 2 of the License, or *    (at your option) any later version. * *    This program is distributed in the hope that it will be useful, *    but WITHOUT ANY WARRANTY; without even the implied warranty of *    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the *    GNU General Public License for more details. * *    You should have received a copy of the GNU General Public License *    along with this program; if not, write to the Free Software *    Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. *//* *    RandomSearch.java *    Copyright (C) 1999 Mark Hall * */package  weka.attributeSelection;import  java.io.*;import  java.util.*;import  weka.core.*;/**  * Class for performing a random search. <p> * * Valid options are: <p> * * -P <start set> <br> * Specify a starting set of attributes. Eg 1,4,7-9. <p> * * -F <percent) <br> * Percentage of the search space to consider. (default = 25). <p> * * -V <br> * Verbose output. Output new best subsets as the search progresses. <p> * * @author Mark Hall (mhall@cs.waikato.ac.nz) * @version $Revision: 1.1.1.1 $ */public class RandomSearch extends ASSearch   implements StartSetHandler, OptionHandler {  /**    * holds a starting set as an array of attributes.   */  private int[] m_starting;    /** holds the start set as a range */  private Range m_startRange;  /** the best feature set found during the search */  private BitSet m_bestGroup;  /** the merit of the best subset found */  private double m_bestMerit;  /**    * only accept a feature set as being "better" than the best if its   * merit is better or equal to the best, and it contains fewer   * features than the best (this allows LVF to be implimented).   */  private boolean m_onlyConsiderBetterAndSmaller; /** does the data have a class */  private boolean m_hasClass;   /** holds the class index */  private int m_classIndex;   /** number of attributes in the data */  private int m_numAttribs;  /** seed for random number generation */  private int m_seed;  /** percentage of the search space to consider */  private double m_searchSize;  /** the number of iterations performed */  private int m_iterations;  /** random number object */  private Random m_random;  /** output new best subsets as the search progresses */  private boolean m_verbose;  /**   * Returns a string describing this search method   * @return a description of the search suitable for   * displaying in the explorer/experimenter gui   */  public String globalInfo() {    return "RandomSearch : \n\nPerforms a Random search in "      +"the space of attribute subsets. If no start set is supplied, Random "      +"search starts from a random point and reports the best subset found. "      +"If a start set is supplied, Random searches randomly for subsets "      +"that are as good or better than the start point with the same or "      +"or fewer attributes. Using RandomSearch in conjunction with a start "      +"set containing all attributes equates to the LVF algorithm of Liu "      +"and Setiono (ICML-96).\n";  }  /**   * Constructor   */  public RandomSearch () {    resetOptions();  }  /**   * Returns an enumeration describing the available options.   * @return an enumeration of all the available options.   **/  public Enumeration listOptions () {    Vector newVector = new Vector(3);        newVector.addElement(new Option("\tSpecify a starting set of attributes." 				    + "\n\tEg. 1,3,5-7."				    +"\n\tIf a start point is supplied,"				    +"\n\trandom search evaluates the start"				    +"\n\tpoint and then randomly looks for"				    +"\n\tsubsets that are as good as or better"				    +"\n\tthan the start point with the same"				    +"\n\tor lower cardinality."				    ,"P",1				    , "-P <start set>"));    newVector.addElement(new Option("\tPercent of search space to consider."				    +"\n\t(default = 25%)."				    , "F", 1				    , "-F <percent> "));    newVector.addElement(new Option("\tOutput subsets as the search progresses."				    +"\n\t(default = false)."				    , "V", 0				    , "-V"));    return  newVector.elements();  }  /**   * Parses a given list of options.   *   * Valid options are: <p>   *   * -P <start set> <br>   * Specify a starting set of attributes. Eg 1,4,7-9. <p>   *   * -F <percent) <br>   * Percentage of the search space to consider. (default = 25). <p>   *   * -V <br>   * Verbose output. Output new best subsets as the search progresses. <p>   *   * @param options the list of options as an array of strings   * @exception Exception if an option is not supported   *   **/  public void setOptions (String[] options)    throws Exception {    String optionString;    resetOptions();        optionString = Utils.getOption('P', options);    if (optionString.length() != 0) {      setStartSet(optionString);    }    optionString = Utils.getOption('F',options);    if (optionString.length() != 0) {      setSearchPercent((new Double(optionString)).doubleValue());    }    setVerbose(Utils.getFlag('V',options));  }  /**   * Returns the tip text for this property   * @return tip text for this property suitable for   * displaying in the explorer/experimenter gui   */  public String startSetTipText() {    return "Set the start point for the search. This is specified as a comma "      +"seperated list off attribute indexes starting at 1. It can include "      +"ranges. Eg. 1,2,5-9,17. If specified, Random searches for subsets "      +"of attributes that are as good as or better than the start set with "      +"the same or lower cardinality.";  }  /**   * Sets a starting set of attributes for the search. It is the   * search method's responsibility to report this start set (if any)   * in its toString() method.   * @param startSet a string containing a list of attributes (and or ranges),   * eg. 1,2,6,10-15. "" indicates no start point.   * If a start point is supplied, random search evaluates the   * start point and then looks for subsets that are as good as or better    * than the start point with the same or lower cardinality.   * @exception Exception if start set can't be set.   */  public void setStartSet (String startSet) throws Exception {    m_startRange.setRanges(startSet);  }  /**   * Returns a list of attributes (and or attribute ranges) as a String   * @return a list of attributes (and or attribute ranges)   */  public String getStartSet () {    return m_startRange.getRanges();  }  /**   * Returns the tip text for this property   * @return tip text for this property suitable for   * displaying in the explorer/experimenter gui   */  public String verboseTipText() {    return "Print progress information. Sends progress info to the terminal "      +"as the search progresses.";  }  /**   * set whether or not to output new best subsets as the search proceeds   * @param v true if output is to be verbose   */  public void setVerbose(boolean v) {    m_verbose = v;  }  /**   * get whether or not output is verbose   * @return true if output is set to verbose   */  public boolean getVerbose() {    return m_verbose;  }  /**   * Returns the tip text for this property   * @return tip text for this property suitable for   * displaying in the explorer/experimenter gui   */  public String searchPercentTipText() {    return "Percentage of the search space to explore.";  }  /**   * set the percentage of the search space to consider   * @param p percent of the search space ( 0 < p <= 100)   */  public void setSearchPercent(double p) {    p = Math.abs(p);    if (p == 0) {      p = 25;    }    if (p > 100.0) {      p = 100;    }    m_searchSize = (p/100.0);  }  /**   * get the percentage of the search space to consider   * @return the percent of the search space explored   */  public double getSearchPercent() {    return m_searchSize;  }  /**   * Gets the current settings of RandomSearch.   * @return an array of strings suitable for passing to setOptions()   */  public String[] getOptions () {    String[] options = new String[5];    int current = 0;    if (m_verbose) {      options[current++] = "-V";    }

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -