⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 nmf.m

📁 wekaUT是 university texas austin 开发的基于weka的半指导学习(semi supervised learning)的分类器
💻 M
字号:
function [W,H] = nmf(V,r,maxiter,obj)% NMF - Non-negative Matrix Factorization% Written by Sebastian Seung, 1999% See http://journalclub.mit.edu/jclub/home, under Computational% Neuroscience%% Factorizes V into WH so that W has rank r.  This snippet calculates% W and H by multiplicative update.  The number of iterations is% maxiter.%% From Sebastian Seung:%% If you encounter problems with overflow/underflow in computing the% quotient V./(W*H), you may want to use this version of the code.% If you find any typos, please let me know.%% ChangeLog:%% 12/6/2002 - (ywwong) Added objective functions 2 and 3.%% 11/13/2002 - (ywwong) Added function header and comment.%[n m]=size(V);W=rand(n,r);              % randomly initialize basisH=rand(r,m);              % randomly initialize encodingseps=1e-9;                 % set your own tolerance% Normalize column sums when maximizing% F = sum_{i,u}[V_{iu}log(WH)_{iu}-(WH)_{iu}].if obj == 1  W=W./(ones(n,1)*sum(W));endfor iter=1:maxiter  switch obj   case 1    % Maximize F = sum_{i,u}[V_{iu}log(WH)_{iu}-(WH)_{iu}].    H=H.*(W'*((V+eps)./(W*H+eps)));    W=W.*(((V+eps)./(W*H+eps))*H');    W=W./(ones(n,1)*sum(W));   case 2    % Minimize F = norm(V-WH).    H=H.*((W'*V+eps)./(W'*W*H+eps));    W=W.*((V*H'+eps)./(W*H*H'+eps));   case 3    % Minimize F = D(V\|WH).    H=H.*((W'*((V+eps)./(W*H+eps)))./((sum(W))'*ones(1,m)));    W=W.*((((V+eps)./(W*H+eps))*H')./(ones(n,1)*(sum(H,2))'));  endend

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -