⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 normalizedpolykernel.java

📁 wekaUT是 university texas austin 开发的基于weka的半指导学习(semi supervised learning)的分类器
💻 JAVA
字号:
/* *    This program is free software; you can redistribute it and/or modify *    it under the terms of the GNU General Public License as published by *    the Free Software Foundation; either version 2 of the License, or *    (at your option) any later version. * *    This program is distributed in the hope that it will be useful, *    but WITHOUT ANY WARRANTY; without even the implied warranty of *    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the *    GNU General Public License for more details. * *    You should have received a copy of the GNU General Public License *    along with this program; if not, write to the Free Software *    Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. *//* *    NormalizedPolyKernel.java *    Copyright (C) 1999 Eibe Frank * */package weka.classifiers.sparse;import weka.core.*;/** * The normalized polynomial kernel.  * K(x,y) = <x,y>/sqrt(<x,x><y,y>) where <x,y> = PolyKernel(x,y) * * @author Eibe Frank (eibe@cs.waikato.ac.nz) * @version $$ */public class NormalizedPolyKernel extends PolyKernel {  /**   * Creates a new <code>NormalizedPolyKernel</code> instance.   *   * @param dataset the training dataset used.   * @param cacheSize the size of the cache (a prime number)   */  public NormalizedPolyKernel(Instances dataset, int cacheSize, double exponent, boolean lowerOrder){	    super(dataset, cacheSize, exponent, lowerOrder);  }      /**   * Redefines the eval function of PolyKernel.   */  public double eval(int id1, int id2, Instance inst1)     throws Exception {	    double div = Math.sqrt(super.eval(id1, id1, inst1) * 			   super.eval(id2, id2, m_data.instance(id2)));    if(div != 0){      return super.eval(id1, id2, inst1) / div;    } else {      return 0;    }  }    }

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -