⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 distributionclassifier.java

📁 wekaUT是 university texas austin 开发的基于weka的半指导学习(semi supervised learning)的分类器
💻 JAVA
字号:
/* *    This program is free software; you can redistribute it and/or modify *    it under the terms of the GNU General Public License as published by *    the Free Software Foundation; either version 2 of the License, or *    (at your option) any later version. * *    This program is distributed in the hope that it will be useful, *    but WITHOUT ANY WARRANTY; without even the implied warranty of *    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the *    GNU General Public License for more details. * *    You should have received a copy of the GNU General Public License *    along with this program; if not, write to the Free Software *    Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. *//* *    DistributionClassifier.java *    Copyright (C) 1999 Eibe Frank, Len Trigg *    Modified by Prem Melville */package weka.classifiers;import weka.core.*;/**  * Abstract classification model that produces (for each test instance) * an estimate of the membership in each class  * (ie. a probability distribution). * * @author   Eibe Frank (trigg@cs.waikato.ac.nz) * @author   Len Trigg (trigg@cs.waikato.ac.nz) * @author   Prem Melville (melville@cs.utexas.edu) * @version $Revision: 1.5 $ */public abstract class DistributionClassifier extends Classifier {  /**   * Predicts the class memberships for a given instance. If   * an instance is unclassified, the returned array elements   * must be all zero. If the class is numeric, the array   * must consist of only one element, which contains the   * predicted value.   *   * @param instance the instance to be classified   * @return an array containing the estimated membership    * probabilities of the test instance in each class (this    * should sum to at most 1)   * @exception Exception if distribution could not be    * computed successfully   */  public abstract double[] distributionForInstance(Instance instance)        throws Exception;    /*     * Calculates the entropy of this classifier on the given instance.     */    public double calculateEntropy(Instance instance) throws Exception{	double []probs = distributionForInstance(instance);	return(ContingencyTables.entropy(probs));    }        /*     * Calculates a score that is a hybrid of margins and uncertainty     */    public double calculateHybridScore(Instance instance) throws Exception{	//Prefer examples that are "near" misses, then those that are	//certain misses, and lastly those that are just uncertain.	double score;	int pred = (int) classifyInstance(instance);	int classIndex = (int) instance.classValue();//assuming the class is nominal 		if(pred == classIndex){//correctly classified	    score = calculateMargin(instance) + 1;	}else{//incorrectly classified	    score = Math.abs(calculateLabeledInstanceMargin(instance)) - 1;	}		assert ((-1.001 <= score) && (score <= 2.001)) : "Score out of range!"+score;	return(score);    }    /*     * Calculates a score that randomly selects the mispredictions and then prefers uncertainity     */    public double calculateRandomHybridScore(Instance instance) throws Exception{	double score;	int pred = (int) classifyInstance(instance);	int classIndex = (int) instance.classValue();//assuming the class is nominal 		if(pred == classIndex){//correctly classified	    score = calculateMargin(instance);	}else{//incorrectly classified	    score = -1.0;//assuming the instances have been randomized in the training sets	    //leads to random selection of incorrectly classified examples	}	assert ((-1.001 <= score) && (score <= 1.001)) : "Score out of range! "+score;	return(score);    }        /*     * Calculates the (normalized) margin on this classifier on the given instance.     */    public double calculateMargin(Instance instance) throws Exception{	//The margin is calculated as the difference in the posterior	//probability of the most popular class and the second most	//popular class	double []probs = distributionForInstance(instance);	int maxIndex = Utils.maxIndex(probs); 	double secondMax = 0;		for (int i = 0; i < probs.length; i++) {	    if ((probs[i] > secondMax) && (i != maxIndex)) {		secondMax = probs[i];	    }	}	assert (probs[maxIndex] - secondMax) >= 0 : "Error in margin calculation.";	return(probs[maxIndex] - secondMax);    }        /*     * Calculates the (normalized) margin of this classifier on the given LABELED instance.     * Only applicable to nominal classes.     */    public double calculateLabeledInstanceMargin(Instance instance) throws Exception{	//The margin is calculated as the difference in the posterior	//probability of the most popular class and the second most	//popular class	double []probs = distributionForInstance(instance);	int classIndex = (int) instance.classValue();//assuming the class is nominal 	double maxIncorrect=0;		for (int i = 0; i < probs.length; i++) {	    if ((probs[i] > maxIncorrect) && (i != classIndex)) {		maxIncorrect = probs[i];	    }	}	double margin = probs[classIndex] - maxIncorrect;	assert ((-1.001 <= margin) && (margin <= 1.001)) : "Margin out of range!"+margin;	return margin;    }  /**   * Classifies the given test instance. The instance has to belong to a   * dataset when it's being classified.   *   * @param instance the instance to be classified   * @return the predicted most likely class for the instance or    * Instance.missingValue() if no prediction is made   * @exception Exception if an error occurred during the prediction   */  public double classifyInstance(Instance instance) throws Exception {    double [] dist = distributionForInstance(instance);    if (dist == null) {      throw new Exception("Null distribution predicted");    }    switch (instance.classAttribute().type()) {    case Attribute.NOMINAL:      double max = 0;      int maxIndex = 0;            for (int i = 0; i < dist.length; i++) {	if (dist[i] > max) {	  maxIndex = i;	  max = dist[i];	}      }      if (max > 0) {	return maxIndex;      } else {	return Instance.missingValue();      }    case Attribute.NUMERIC:      return dist[0];    default:      return Instance.missingValue();    }  }}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -