⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 multischeme.java

📁 wekaUT是 university texas austin 开发的基于weka的半指导学习(semi supervised learning)的分类器
💻 JAVA
字号:
/* *    This program is free software; you can redistribute it and/or modify *    it under the terms of the GNU General Public License as published by *    the Free Software Foundation; either version 2 of the License, or *    (at your option) any later version. * *    This program is distributed in the hope that it will be useful, *    but WITHOUT ANY WARRANTY; without even the implied warranty of *    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the *    GNU General Public License for more details. * *    You should have received a copy of the GNU General Public License *    along with this program; if not, write to the Free Software *    Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. *//* *    MultiScheme.java *    Copyright (C) 1999 Len Trigg * */package weka.classifiers.meta;import weka.classifiers.Evaluation;import weka.classifiers.Classifier;import weka.classifiers.rules.ZeroR;import java.io.*;import java.util.*;import weka.core.*;/** * Class for selecting a classifier from among several using cross  * validation on the training data.<p> * * Valid options from the command line are:<p> * * -D <br> * Turn on debugging output.<p> * * -S seed <br> * Random number seed (default 1).<p> * * -B classifierstring <br> * Classifierstring should contain the full class name of a scheme * included for selection followed by options to the classifier * (required, option should be used once for each classifier).<p> * * -X num_folds <br> * Use cross validation error as the basis for classifier selection. * (default 0, is to use error on the training data instead)<p> * * @author Len Trigg (trigg@cs.waikato.ac.nz) * @version $Revision: 1.1.1.1 $ */public class MultiScheme extends Classifier implements OptionHandler {  /** The classifier that had the best performance on training data. */  protected Classifier m_Classifier;   /** The list of classifiers */  protected Classifier [] m_Classifiers = {     new weka.classifiers.rules.ZeroR()  };  /** The index into the vector for the selected scheme */  protected int m_ClassifierIndex;  /**   * Number of folds to use for cross validation (0 means use training   * error for selection)   */  protected int m_NumXValFolds;  /** Debugging mode, gives extra output if true */  protected boolean m_Debug;  /** Random number seed */  protected int m_Seed = 1;  /**   * Returns an enumeration describing the available options.   *   * @return an enumeration of all the available options.   */  public Enumeration listOptions() {    Vector newVector = new Vector(4);    newVector.addElement(new Option(	      "\tTurn on debugging output.",	      "D", 0, "-D"));    newVector.addElement(new Option(	      "\tFull class name of classifier to include, followed\n"	      + "\tby scheme options. May be specified multiple times,\n"	      + "\trequired at least twice.\n"	      + "\teg: \"weka.classifiers.bayes.NaiveBayes -D\"",	      "B", 1, "-B <classifier specification>"));    newVector.addElement(new Option(	      "\tSets the random number seed (default 1).",	      "S", 1, "-S <random number seed>"));    newVector.addElement(new Option(	      "\tUse cross validation for model selection using the\n"	      + "\tgiven number of folds. (default 0, is to\n"	      + "\tuse training error)",	      "X", 1, "-X <number of folds>"));    return newVector.elements();  }  /**   * Parses a given list of options. Valid options are:<p>   *   * -D <br>   * Turn on debugging output.<p>   *   * -S seed <br>   * Random number seed (default 1).<p>   *   * -B classifierstring <br>   * Classifierstring should contain the full class name of a scheme   * included for selection followed by options to the classifier   * (required, option should be used once for each classifier).<p>   *   * -X num_folds <br>   * Use cross validation error as the basis for classifier selection.   * (default 0, is to use error on the training data instead)<p>   *   * @param options the list of options as an array of strings   * @exception Exception if an option is not supported   */  public void setOptions(String[] options) throws Exception {    setDebug(Utils.getFlag('D', options));        String numFoldsString = Utils.getOption('X', options);    if (numFoldsString.length() != 0) {      setNumFolds(Integer.parseInt(numFoldsString));    } else {      setNumFolds(0);    }        String randomString = Utils.getOption('S', options);    if (randomString.length() != 0) {      setSeed(Integer.parseInt(randomString));    } else {      setSeed(1);    }    // Iterate through the schemes    FastVector classifiers = new FastVector();    while (true) {      String classifierString = Utils.getOption('B', options);      if (classifierString.length() == 0) {	break;      }      String [] classifierSpec = Utils.splitOptions(classifierString);      if (classifierSpec.length == 0) {	throw new Exception("Invalid classifier specification string");      }      String classifierName = classifierSpec[0];      classifierSpec[0] = "";      classifiers.addElement(Classifier.forName(classifierName,						classifierSpec));    }    if (classifiers.size() <= 1) {      throw new Exception("At least two classifiers must be specified"			  + " with the -B option.");    } else {      Classifier [] classifiersArray = new Classifier [classifiers.size()];      for (int i = 0; i < classifiersArray.length; i++) {	classifiersArray[i] = (Classifier) classifiers.elementAt(i);      }      setClassifiers(classifiersArray);    }      }  /**   * Gets the current settings of the Classifier.   *   * @return an array of strings suitable for passing to setOptions   */  public String [] getOptions() {    String [] options = new String [5];    int current = 0;    if (m_Classifiers.length != 0) {      options = new String [m_Classifiers.length * 2 + 5];      for (int i = 0; i < m_Classifiers.length; i++) {	options[current++] = "-B";	options[current++] = "" + getClassifierSpec(i);      }    }    if (getNumFolds() > 1) {      options[current++] = "-X"; options[current++] = "" + getNumFolds();    }    options[current++] = "-S"; options[current++] = "" + getSeed();    if (getDebug()) {      options[current++] = "-D";    }    while (current < options.length) {      options[current++] = "";    }    return options;  }  /**   * Sets the list of possible classifers to choose from.   *   * @param classifiers an array of classifiers with all options set.   */  public void setClassifiers(Classifier [] classifiers) {    m_Classifiers = classifiers;  }  /**   * Gets the list of possible classifers to choose from.   *   * @return the array of Classifiers   */  public Classifier [] getClassifiers() {    return m_Classifiers;  }    /**   * Gets a single classifier from the set of available classifiers.   *   * @param index the index of the classifier wanted   * @return the Classifier   */  public Classifier getClassifier(int index) {    return m_Classifiers[index];  }    /**   * Gets the classifier specification string, which contains the class name of   * the classifier and any options to the classifier   *   * @param index the index of the classifier string to retrieve, starting from   * 0.   * @return the classifier string, or the empty string if no classifier   * has been assigned (or the index given is out of range).   */  protected String getClassifierSpec(int index) {        if (m_Classifiers.length < index) {      return "";    }    Classifier c = getClassifier(index);    if (c instanceof OptionHandler) {      return c.getClass().getName() + " "	+ Utils.joinOptions(((OptionHandler)c).getOptions());    }    return c.getClass().getName();  }  /**   * Sets the seed for random number generation.   *   * @param seed the random number seed   */  public void setSeed(int seed) {        m_Seed = seed;;  }  /**   * Gets the random number seed.   *    * @return the random number seed   */  public int getSeed() {    return m_Seed;  }  /**    * Gets the number of folds for cross-validation. A number less   * than 2 specifies using training error rather than cross-validation.   *   * @return the number of folds for cross-validation   */  public int getNumFolds() {    return m_NumXValFolds;  }  /**   * Sets the number of folds for cross-validation. A number less   * than 2 specifies using training error rather than cross-validation.   *   * @param numFolds the number of folds for cross-validation   */  public void setNumFolds(int numFolds) {        m_NumXValFolds = numFolds;  }  /**   * Set debugging mode   *   * @param debug true if debug output should be printed   */  public void setDebug(boolean debug) {    m_Debug = debug;  }  /**   * Get whether debugging is turned on   *   * @return true if debugging output is on   */  public boolean getDebug() {    return m_Debug;  }  /**   * Buildclassifier selects a classifier from the set of classifiers   * by minimising error on the training data.   *   * @param data the training data to be used for generating the   * boosted classifier.   * @exception Exception if the classifier could not be built successfully   */  public void buildClassifier(Instances data) throws Exception {    if (m_Classifiers.length == 0) {      throw new Exception("No base classifiers have been set!");    }    Instances newData = new Instances(data);    newData.deleteWithMissingClass();    newData.randomize(new Random(m_Seed));    if (newData.classAttribute().isNominal() && (m_NumXValFolds > 1))      newData.stratify(m_NumXValFolds);    Instances train = newData;               // train on all data by default    Instances test = newData;               // test on training data by default    Classifier bestClassifier = null;    int bestIndex = -1;    double bestPerformance = Double.NaN;    int numClassifiers = m_Classifiers.length;    for (int i = 0; i < numClassifiers; i++) {      Classifier currentClassifier = getClassifier(i);      Evaluation evaluation;      if (m_NumXValFolds > 1) {	evaluation = new Evaluation(newData);	for (int j = 0; j < m_NumXValFolds; j++) {	  train = newData.trainCV(m_NumXValFolds, j);	  test = newData.testCV(m_NumXValFolds, j);	  currentClassifier.buildClassifier(train);	  evaluation.setPriors(train);	  evaluation.evaluateModel(currentClassifier, test);	}      } else {	currentClassifier.buildClassifier(train);	evaluation = new Evaluation(train);	evaluation.evaluateModel(currentClassifier, test);      }      double error = evaluation.errorRate();      if (m_Debug) {	System.err.println("Error rate: " + Utils.doubleToString(error, 6, 4)			   + " for classifier "			   + currentClassifier.getClass().getName());      }      if ((i == 0) || (error < bestPerformance)) {	bestClassifier = currentClassifier;	bestPerformance = error;	bestIndex = i;      }    }    m_ClassifierIndex = bestIndex;    m_Classifier = bestClassifier;    if (m_NumXValFolds > 1) {      m_Classifier.buildClassifier(newData);    }  }  /**   * Classifies a given instance using the selected classifier.   *   * @param instance the instance to be classified   * @exception Exception if instance could not be classified   * successfully   */  public double classifyInstance(Instance instance) throws Exception {    return m_Classifier.classifyInstance(instance);  }  /**   * Output a representation of this classifier   */  public String toString() {    if (m_Classifier == null) {      return "MultiScheme: No model built yet.";    }    String result = "MultiScheme selection using";    if (m_NumXValFolds > 1) {      result += " cross validation error";    } else {      result += " error on training data";    }    result += " from the following:\n";    for (int i = 0; i < m_Classifiers.length; i++) {      result += '\t' + getClassifierSpec(i) + '\n';    }    result += "Selected scheme: "      + getClassifierSpec(m_ClassifierIndex)      + "\n\n"      + m_Classifier.toString();    return result;  }  /**   * Main method for testing this class.   *   * @param argv should contain the following arguments:   * -t training file [-T test file] [-c class index]   */  public static void main(String [] argv) {    try {      System.out.println(Evaluation.evaluateModel(new MultiScheme(), argv));    } catch (Exception e) {      System.err.println(e.getMessage());    }  }}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -