📄 stacking.java
字号:
m_BaseClassifiers = classifiers; } /** * Gets the list of possible classifers to choose from. * * @return the array of Classifiers */ public Classifier [] getBaseClassifiers() { return m_BaseClassifiers; } /** * Gets the specific classifier from the set of base classifiers. * * @param index the index of the classifier to retrieve * @return the classifier */ public Classifier getBaseClassifier(int index) { return m_BaseClassifiers[index]; } /** * Adds meta classifier * * @param classifier the classifier with all options set. */ public void setMetaClassifier(Classifier classifier) { m_MetaClassifier = classifier; } /** * Gets the meta classifier. * * @return the meta classifier */ public Classifier getMetaClassifier() { return m_MetaClassifier; } /** * Buildclassifier selects a classifier from the set of classifiers * by minimising error on the training data. * * @param data the training data to be used for generating the * boosted classifier. * @exception Exception if the classifier could not be built successfully */ public void buildClassifier(Instances data) throws Exception { if (m_BaseClassifiers.length == 0) { throw new Exception("No base classifiers have been set"); } if (m_MetaClassifier == null) { throw new Exception("No meta classifier has been set"); } if (!(data.classAttribute().isNominal() || data.classAttribute().isNumeric())) { throw new Exception("Class attribute has to be nominal or numeric!"); } Instances newData = new Instances(data); m_BaseFormat = new Instances(data, 0); newData.deleteWithMissingClass(); if (newData.numInstances() == 0) { throw new Exception("No training instances without missing class!"); } newData.randomize(new Random(m_Seed)); if (newData.classAttribute().isNominal()) newData.stratify(m_NumFolds); int numClassifiers = m_BaseClassifiers.length; // Create meta data Instances metaData = metaFormat(newData); m_MetaFormat = new Instances(metaData, 0); for (int j = 0; j < m_NumFolds; j++) { Instances train = newData.trainCV(m_NumFolds, j); // Build base classifiers for (int i = 0; i < m_BaseClassifiers.length; i++) { getBaseClassifier(i).buildClassifier(train); } // Classify test instances and add to meta data Instances test = newData.testCV(m_NumFolds, j); for (int i = 0; i < test.numInstances(); i++) { metaData.add(metaInstance(test.instance(i))); } } // Rebuilt all the base classifiers on the full training data for (int i = 0; i < numClassifiers; i++) { getBaseClassifier(i).buildClassifier(newData); } // Build meta classifier m_MetaClassifier.buildClassifier(metaData); } /** * Classifies a given instance using the stacked classifier. * * @param instance the instance to be classified * @exception Exception if instance could not be classified * successfully */ public double classifyInstance(Instance instance) throws Exception { return m_MetaClassifier.classifyInstance(metaInstance(instance)); } /** * Output a representation of this classifier */ public String toString() { if (m_BaseClassifiers.length == 0) { return "Stacking: No base schemes entered."; } if (m_MetaClassifier == null) { return "Stacking: No meta scheme selected."; } if (m_MetaFormat == null) { return "Stacking: No model built yet."; } String result = "Stacking\n\nBase classifiers\n\n"; for (int i = 0; i < m_BaseClassifiers.length; i++) { result += getBaseClassifier(i).toString() +"\n\n"; } result += "\n\nMeta classifier\n\n"; result += m_MetaClassifier.toString(); return result; } /** * Main method for testing this class. * * @param argv should contain the following arguments: * -t training file [-T test file] [-c class index] */ public static void main(String [] argv) { try { System.out.println(Evaluation.evaluateModel(new Stacking(), argv)); } catch (Exception e) { System.err.println(e.getMessage()); } } /** * Makes the format for the level-1 data. * * @param instances the level-0 format * @return the format for the meta data */ protected Instances metaFormat(Instances instances) throws Exception { FastVector attributes = new FastVector(); Instances metaFormat; Attribute attribute; int i = 0; for (int k = 0; k < m_BaseClassifiers.length; k++) { Classifier classifier = (Classifier) getBaseClassifier(k); String name = classifier.getClass().getName(); if (m_BaseFormat.classAttribute().isNumeric()) { attributes.addElement(new Attribute(name)); } else { if (classifier instanceof DistributionClassifier) { for (int j = 0; j < m_BaseFormat.classAttribute().numValues(); j++) { attributes.addElement(new Attribute(name + ":" + m_BaseFormat .classAttribute().value(j))); } } else { FastVector values = new FastVector(); for (int j = 0; j < m_BaseFormat.classAttribute().numValues(); j++) { values.addElement(m_BaseFormat.classAttribute().value(j)); } attributes.addElement(new Attribute(name, values)); } } } attributes.addElement(m_BaseFormat.classAttribute()); metaFormat = new Instances("Meta format", attributes, 0); metaFormat.setClassIndex(metaFormat.numAttributes() - 1); return metaFormat; } /** * Gets the classifier specification string, which contains the class name of * the classifier and any options to the classifier * * @param index the index of the classifier string to retrieve, starting from * 0. * @return the classifier string, or the empty string if no classifier * has been assigned (or the index given is out of range). */ protected String getBaseClassifierSpec(int index) { if (m_BaseClassifiers.length < index) { return ""; } return getClassifierSpec(getBaseClassifier(index)); } /** * Gets the classifier specification string, which contains the class name of * the classifier and any options to the classifier * * @param c the classifier * @return the classifier specification string. */ protected String getClassifierSpec(Classifier c) { if (c instanceof OptionHandler) { return c.getClass().getName() + " " + Utils.joinOptions(((OptionHandler)c).getOptions()); } return c.getClass().getName(); } /** * Makes a level-1 instance from the given instance. * * @param instance the instance to be transformed * @return the level-1 instance */ protected Instance metaInstance(Instance instance) throws Exception { double[] values = new double[m_MetaFormat.numAttributes()]; Instance metaInstance; int i = 0; for (int k = 0; k < m_BaseClassifiers.length; k++) { Classifier classifier = getBaseClassifier(k); if (m_BaseFormat.classAttribute().isNumeric()) { values[i++] = classifier.classifyInstance(instance); } else { if (classifier instanceof DistributionClassifier) { double[] dist = ((DistributionClassifier)classifier). distributionForInstance(instance); for (int j = 0; j < dist.length; j++) { values[i++] = dist[j]; } } else { values[i++] = classifier.classifyInstance(instance); } } } values[i] = instance.classValue(); metaInstance = new Instance(1, values); metaInstance.setDataset(m_MetaFormat); return metaInstance; }}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -