⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 stacking.java

📁 wekaUT是 university texas austin 开发的基于weka的半指导学习(semi supervised learning)的分类器
💻 JAVA
📖 第 1 页 / 共 2 页
字号:
/* *    This program is free software; you can redistribute it and/or modify *    it under the terms of the GNU General Public License as published by *    the Free Software Foundation; either version 2 of the License, or *    (at your option) any later version. * *    This program is distributed in the hope that it will be useful, *    but WITHOUT ANY WARRANTY; without even the implied warranty of *    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the *    GNU General Public License for more details. * *    You should have received a copy of the GNU General Public License *    along with this program; if not, write to the Free Software *    Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. *//* *    Stacking.java *    Copyright (C) 1999 Eibe Frank * */package weka.classifiers.meta;import weka.classifiers.Evaluation;import weka.classifiers.Classifier;import weka.classifiers.DistributionClassifier;import weka.classifiers.rules.ZeroR;import java.io.*;import java.util.*;import weka.core.*;/** * Implements stacking. For more information, see<p> * * David H. Wolpert (1992). <i>Stacked * generalization</i>. Neural Networks, 5:241-259, Pergamon Press. <p> * * Valid options are:<p> * * -X num_folds <br> * The number of folds for the cross-validation (default 10).<p> * * -S seed <br> * Random number seed (default 1).<p> * * -B classifierstring <br> * Classifierstring should contain the full class name of a base scheme * followed by options to the classifier. * (required, option should be used once for each classifier).<p> * * -M classifierstring <br> * Classifierstring for the meta classifier. Same format as for base * classifiers. (required) <p> * * @author Eibe Frank (eibe@cs.waikato.ac.nz) * @version $Revision: 1.1.1.1 $  */public class Stacking extends Classifier implements OptionHandler {  /** The meta classifier. */  protected Classifier m_MetaClassifier = new weka.classifiers.rules.ZeroR();  /** The base classifiers. */  protected Classifier [] m_BaseClassifiers = {     new weka.classifiers.rules.ZeroR()  };   /** Format for meta data */  protected Instances m_MetaFormat = null;  /** Format for base data */  protected Instances m_BaseFormat = null;  /** Set the number of folds for the cross-validation */  protected int m_NumFolds = 10;  /** Random number seed */  protected int m_Seed = 1;  /**   * Returns an enumeration describing the available options.   *   * @return an enumeration of all the available options.   */  public Enumeration listOptions() {    Vector newVector = new Vector(4);    newVector.addElement(new Option(	      "\tFull class name of base classifiers to include, followed "	      + "by scheme options\n"	      + "\t(may be specified multiple times).\n"	      + "\teg: \"weka.classifiers.bayes.NaiveBayes -K\"",	      "B", 1, "-B <scheme specification>"));    newVector.addElement(new Option(	      "\tFull name of meta classifier, followed by options.",	      "M", 0, "-M <scheme specification>"));    newVector.addElement(new Option(	      "\tSets the number of cross-validation folds.",	      "X", 1, "-X <number of folds>"));    newVector.addElement(new Option(	      "\tSets the random number seed.",	      "S", 1, "-S <random number seed>"));    return newVector.elements();  }  /**   * Parses a given list of options. Valid options are:<p>   *   * -X num_folds <br>   * The number of folds for the cross-validation (default 10).<p>   *   * -S seed <br>   * Random number seed (default 1).<p>   *   * -B classifierstring <br>   * Classifierstring should contain the full class name of a base scheme   * followed by options to the classifier.   * (required, option should be used once for each classifier).<p>   *   * -M classifierstring <br>   * Classifierstring for the meta classifier. Same format as for base   * classifiers. (required) <p>   *   * @param options the list of options as an array of strings   * @exception Exception if an option is not supported   */  public void setOptions(String[] options) throws Exception {    String numFoldsString = Utils.getOption('X', options);    if (numFoldsString.length() != 0) {      setNumFolds(Integer.parseInt(numFoldsString));    } else {      setNumFolds(10);    }    String randomString = Utils.getOption('S', options);    if (randomString.length() != 0) {      setSeed(Integer.parseInt(randomString));    } else {      setSeed(1);    }    // Iterate through the schemes    FastVector classifiers = new FastVector();    while (true) {      String classifierString = Utils.getOption('B', options);      if (classifierString.length() == 0) {	break;      }      String [] classifierSpec = Utils.splitOptions(classifierString);      if (classifierSpec.length == 0) {	throw new Exception("Invalid classifier specification string");      }      String classifierName = classifierSpec[0];      classifierSpec[0] = "";      classifiers.addElement(Classifier.forName(classifierName,						classifierSpec));    }    if (classifiers.size() == 0) {      throw new Exception("At least one base classifier must be specified"			  + " with the -B option.");    } else {      Classifier [] classifiersArray = new Classifier [classifiers.size()];      for (int i = 0; i < classifiersArray.length; i++) {	classifiersArray[i] = (Classifier) classifiers.elementAt(i);      }      setBaseClassifiers(classifiersArray);    }    String classifierString = Utils.getOption('M', options);    String [] classifierSpec = Utils.splitOptions(classifierString);    if (classifierSpec.length == 0) {      throw new Exception("Meta classifier has to be provided.");    }    String classifierName = classifierSpec[0];    classifierSpec[0] = "";    setMetaClassifier(Classifier.forName(classifierName, classifierSpec));  }  /**   * Gets the current settings of the Classifier.   *   * @return an array of strings suitable for passing to setOptions   */  public String [] getOptions() {    String [] options = new String[6];    int current = 0;    if (m_BaseClassifiers.length != 0) {      options = new String [m_BaseClassifiers.length * 2 + 6];      for (int i = 0; i < m_BaseClassifiers.length; i++) {	options[current++] = "-B";	options[current++] = "" + getBaseClassifierSpec(i);      }    }    options[current++] = "-X"; options[current++] = "" + getNumFolds();    options[current++] = "-S"; options[current++] = "" + getSeed();    if (getMetaClassifier() != null) {      options[current++] = "-M";      options[current++] = getClassifierSpec(getMetaClassifier());    }    while (current < options.length) {      options[current++] = "";    }    return options;  }  /**   * Sets the seed for random number generation.   *   * @param seed the random number seed   */  public void setSeed(int seed) {        m_Seed = seed;;  }  /**   * Gets the random number seed.   *    * @return the random number seed   */  public int getSeed() {    return m_Seed;  }  /**    * Gets the number of folds for the cross-validation.   *   * @return the number of folds for the cross-validation   */  public int getNumFolds() {    return m_NumFolds;  }  /**   * Sets the number of folds for the cross-validation.   *   * @param numFolds the number of folds for the cross-validation   * @exception Exception if parameter illegal   */  public void setNumFolds(int numFolds) throws Exception {        if (numFolds < 0) {      throw new Exception("Stacking: Number of cross-validation " +			  "folds must be positive.");    }    m_NumFolds = numFolds;  }  /**   * Sets the list of possible classifers to choose from.   *   * @param classifiers an array of classifiers with all options set.   */  public void setBaseClassifiers(Classifier [] classifiers) {

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -