⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 distributionmetaclassifier.java

📁 wekaUT是 university texas austin 开发的基于weka的半指导学习(semi supervised learning)的分类器
💻 JAVA
字号:
/* *    This program is free software; you can redistribute it and/or modify *    it under the terms of the GNU General Public License as published by *    the Free Software Foundation; either version 2 of the License, or *    (at your option) any later version. * *    This program is distributed in the hope that it will be useful, *    but WITHOUT ANY WARRANTY; without even the implied warranty of *    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the *    GNU General Public License for more details. * *    You should have received a copy of the GNU General Public License *    along with this program; if not, write to the Free Software *    Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. *//* *    DistributionMetaClassifier.java *    Copyright (C) 2002 Richard Kirkby * */package weka.classifiers.meta;import weka.classifiers.DistributionClassifier;import weka.classifiers.Classifier;import weka.classifiers.Evaluation;import weka.core.*;import java.util.Enumeration;import java.util.Vector;/** * Class for wrapping a Classifier to make it return a distribution. Simply outputs * a probabiltry of 1 for the predicted class and 0 for the others. * * @author Richard Kirkby (rkirkby@cs.waikato.ac.nz) * @version $Revision: 1.1.1.1 $ */public class DistributionMetaClassifier extends DistributionClassifier   implements OptionHandler {  /** The classifier being wrapped */  private Classifier m_wrappedClassifier = new weka.classifiers.rules.ZeroR();  /**   * Default constructor.   *    */    public DistributionMetaClassifier() {  }     /**   * Contructs a DistributionMetaClassifier wrapping a given Classifier.   *    * @param toWrap the classifier to wrap around   */      public DistributionMetaClassifier(Classifier toWrap) {    setClassifier(toWrap);  }    /**   * Builds a classifier for a set of instances.   *   * @param instances the instances to train the classifier with   * @exception Exception if the classifier hasn't been set or something goes wrong   */    public void buildClassifier(Instances data) throws Exception {    if (m_wrappedClassifier == null) {      throw new Exception("No classifier has been set");    }    m_wrappedClassifier.buildClassifier(data);  }    /**   * Returns the class probability distribution for an instance. Will simply have a   * probability of 1 for the predicted class and 0 for the others.   *   * @param instance the instance to be classified   * @return the probability distribution   */    public double[] distributionForInstance(Instance instance) throws Exception {        double predictedClass = m_wrappedClassifier.classifyInstance(instance);    double[] distribution = new double[instance.numClasses()];    if (!Instance.isMissingValue(predictedClass)) {      if (instance.classAttribute().type() == Attribute.NOMINAL) {	distribution[(int) predictedClass] = 1.0;      } else {	distribution[0] = predictedClass;      }    }    return distribution;  }    /**   * Returns a description of the classifier.   *   * @return a string containing a description of the classifier   */  public String toString() {    return "DistributionMetaClassifier: " + m_wrappedClassifier.toString();  }  /**   * Sets the classifier to wrap.   *   * @param toWrap the classifier   */  public void setClassifier(Classifier toWrap) {    m_wrappedClassifier = toWrap;  }  /**   * Gets the classifier being wrapped.   *   * @return the classifier   */  public Classifier getClassifier() {    return m_wrappedClassifier;  }  /**   * Returns an enumeration describing the available options..   *   * @return an enumeration of all the available options.   */  public Enumeration listOptions() {        Vector newVector = new Vector(1);    newVector.addElement(new Option(				    "\tClassifier to wrap. (required)\n",				    "W", 1,"-W <classifier name>"));    if ((m_wrappedClassifier != null) &&	(m_wrappedClassifier instanceof OptionHandler)) {      newVector.addElement(new Option(				      "",				      "", 0, "\nOptions specific to classifier "				      + m_wrappedClassifier.getClass().getName() + ":"));      Enumeration enum = ((OptionHandler)m_wrappedClassifier).listOptions();      while (enum.hasMoreElements()) {	newVector.addElement(enum.nextElement());      }    }        return newVector.elements();  }  /**   * Parses a given list of options. Valid options are:<p>   *   * -W classifier name <br>   * Classifier to wrap. (required) <p>   *   * @param options the list of options as an array of strings   * @exception Exception if an option is not supported   */  public void setOptions(String[] options) throws Exception {        String wString = Utils.getOption('W', options);    if (wString.length() != 0) {      setClassifier(Classifier.forName(wString,				       Utils.partitionOptions(options)));    } else {      throw new Exception("A classifier must be specified with the -W option.");    }  }  /**   * Gets the current settings of the classifier.   *   * @return an array of strings suitable for passing to setOptions()   */  public String[] getOptions() {    String [] classifierOptions = new String [0];    if ((m_wrappedClassifier != null) &&	(m_wrappedClassifier instanceof OptionHandler)) {      classifierOptions = ((OptionHandler)m_wrappedClassifier).getOptions();    }    String [] options = new String [classifierOptions.length + 3];    int current = 0;    if (getClassifier() != null) {      options[current++] = "-W";      options[current++] = getClassifier().getClass().getName();    }    options[current++] = "--";    System.arraycopy(classifierOptions, 0, options, current, 		     classifierOptions.length);    current += classifierOptions.length;    while (current < options.length) {      options[current++] = "";    }    return options;  }  /**   * Main method for testing this class.   *   * @param argv the options   */  public static void main(String [] argv) {        try {      System.out.println(Evaluation.evaluateModel(new DistributionMetaClassifier(), 						  argv));    } catch (Exception e) {      System.err.println(e.getMessage());    }  }}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -