⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 regressionbydiscretization.java

📁 wekaUT是 university texas austin 开发的基于weka的半指导学习(semi supervised learning)的分类器
💻 JAVA
字号:
/* *    This program is free software; you can redistribute it and/or modify *    it under the terms of the GNU General Public License as published by *    the Free Software Foundation; either version 2 of the License, or *    (at your option) any later version. * *    This program is distributed in the hope that it will be useful, *    but WITHOUT ANY WARRANTY; without even the implied warranty of *    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the *    GNU General Public License for more details. * *    You should have received a copy of the GNU General Public License *    along with this program; if not, write to the Free Software *    Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. *//* *    RegressionByDiscretization.java *    Copyright (C) 1999 Len Trigg * */package weka.classifiers.meta;import weka.classifiers.Evaluation;import weka.classifiers.Classifier;import weka.classifiers.DistributionClassifier;import weka.classifiers.rules.ZeroR;import java.io.*;import java.util.*;import weka.core.*;import weka.estimators.*;import weka.filters.unsupervised.attribute.Discretize;import weka.filters.Filter;/** * Class for a regression scheme that employs any distribution * classifier on a copy of the data that has the class attribute * discretized. The predicted value is the expected value of the  * mean class value for each discretized interval (based on the  * predicted probabilities for each interval).<p> * * Valid options are:<p> * * -D <br> * Produce debugging output. <p> * * -W classname <br> * Specify the full class name of a classifier as the basis for  * regression (required).<p> * * -B num <br> * The number of bins the class attribute will be discretized into. * (default 10) <p> * * -O <br> * Optimize number of bins (values up to and including the -B option will * be considered). (default no debugging output) <p> * * Any options after -- will be passed to the sub-classifier. <p> * * @author Len Trigg (trigg@cs.waikato.ac.nz) * @version $Revision: 1.1.1.1 $ */public class RegressionByDiscretization extends Classifier   implements OptionHandler {  /** The subclassifier. */  protected DistributionClassifier m_Classifier = new weka.classifiers.rules.ZeroR();    /** The discretization filter. */  protected Discretize m_Discretizer;  /** The number of classes in the Discretized training data. */  protected int m_NumBins = 10;  /** The mean values for each Discretized class interval. */  protected double [] m_ClassMeans;  /** Whether debugging output will be printed */  protected boolean m_Debug;  /** Whether the Discretizer will optimise the number of bins */  protected boolean m_OptimizeBins;  /**   * Generates the classifier.   *   * @param instances set of instances serving as training data    * @exception Exception if the classifier has not been generated successfully   */  public void buildClassifier(Instances instances) throws Exception {    if (!instances.classAttribute().isNumeric()) {      throw new UnsupportedClassTypeException ("Class attribute has to be numeric");    }    // Discretize the training data    m_Discretizer = new Discretize();    m_Discretizer.setBins(m_NumBins);    if (m_OptimizeBins) {      m_Discretizer.setFindNumBins(true);    }    m_Discretizer.setAttributeIndices(""+ (instances.classIndex() + 1));    m_Discretizer.setInputFormat(instances);    Instances newTrain = Filter.useFilter(instances, m_Discretizer);    int numClasses = newTrain.numClasses();    // Calculate the mean value for each bin of the new class attribute    m_ClassMeans = new double [numClasses];    int [] classCounts = new int [numClasses];    for (int i = 0; i < instances.numInstances(); i++) {      int classVal = (int) newTrain.instance(i).classValue();      classCounts[classVal]++;      m_ClassMeans[classVal] += instances.instance(i).classValue();    }    for (int i = 0; i < numClasses; i++) {      if (classCounts[i] > 0) {	m_ClassMeans[i] /= classCounts[i];      }    }    if (m_Debug) {      System.out.println("Boundaries    Bin Mean");      System.out.println("======================");      System.out.println("-infinity");      double [] cutPoints = m_Discretizer.getCutPoints(instances.classIndex());      if (cutPoints != null) {	for (int i = 0; i < cutPoints.length; i++) {	  System.out.println("              " + m_ClassMeans[i]);	  System.out.println("" + cutPoints[i]);	}      }      System.out.println("              " 			 + m_ClassMeans[m_ClassMeans.length - 1]);      System.out.println("infinity");    }    // Train the sub-classifier    m_Classifier.buildClassifier(newTrain);  }  /**   * Returns a predicted class for the test instance.   *   * @param instance the instance to be classified   * @return predicted class value   * @exception Exception if the prediction couldn't be made   */  public double classifyInstance(Instance instance)        throws Exception {      // Discretize the test instance    if (m_Discretizer.numPendingOutput() > 0) {      throw new Exception("Discretize output queue not empty");    }    if (m_Discretizer.input(instance)) {      m_Discretizer.batchFinished();      Instance newInstance = m_Discretizer.output();      double [] probs = m_Classifier.distributionForInstance(newInstance);            double prediction = 0, probSum = 0;      for (int j = 0; j < probs.length; j++) {	prediction += probs[j] * m_ClassMeans[j];	probSum += probs[j];      }            return prediction / probSum;          } else {      throw new Exception("Discretize didn't make the test instance"			  + " immediately available");    }  }  /**   * Returns an enumeration describing the available options.   *   * @return an enumeration of all the available options.   */  public Enumeration listOptions() {    Vector newVector = new Vector(3);    newVector.addElement(new Option("\tProduce debugging output."				    + "\t(default no debugging output)",				    "D", 0,"-D"));    newVector.addElement(new Option("\tNumber of bins the class attribute will"				    + " be discretized into.\n"				    + "\t(default 10)",				    "B", 1,"-B"));    newVector.addElement(new Option("\tOptimize number of bins (values"				    + " up to and including the -B option will"				    + " be considered)\n"				    + "\t(default no debugging output)",				    "O", 0,"-O"));    newVector.addElement(new Option("\tFull class name of sub-classifier to"				    + " use for the regression.\n"				    + "\teg: weka.classifiers.bayes.NaiveBayes",				    "W", 1,"-W"));    return newVector.elements();  }  /**   * Parses a given list of options. Valid options are:<p>   *   * -D <br>   * Produce debugging output. <p>   *   * -W classname <br>   * Specify the full class name of a classifier as the basis for    * regression (required).<p>   *   * -B num <br>   * The number of bins the class attribute will be discretized into.   * (default 10) <p>   *   * -O <br>   * Optimize number of bins (values up to and including the -B option will   * be considered). (default no debugging output) <p>   *   * Any options after -- will be passed to the sub-classifier. <p>   *   * @param options the list of options as an array of strings   * @exception Exception if an option is not supported   */  public void setOptions(String[] options) throws Exception {    String binString = Utils.getOption('B', options);    if (binString.length() != 0) {      setNumBins(Integer.parseInt(binString));    } else {      setNumBins(10);    }    setDebug(Utils.getFlag('D', options));    setOptimizeBins(Utils.getFlag('O', options));    String classifierName = Utils.getOption('W', options);    if (classifierName.length() == 0) {      throw new Exception("A classifier must be specified with"			  + " the -W option.");    }    setClassifier(Classifier.forName(classifierName,				     Utils.partitionOptions(options)));  }  /**   * Gets the current settings of the Classifier.   *   * @return an array of strings suitable for passing to setOptions   */  public String [] getOptions() {    String [] classifierOptions = new String [0];    if ((m_Classifier != null) && 	(m_Classifier instanceof OptionHandler)) {      classifierOptions = ((OptionHandler)m_Classifier).getOptions();    }    String [] options = new String [classifierOptions.length + 7];    int current = 0;    if (getDebug()) {      options[current++] = "-D";    }    if (getOptimizeBins()) {      options[current++] = "-O";    }    options[current++] = "-B"; options[current++] = "" + getNumBins();    if (getClassifier() != null) {      options[current++] = "-W";      options[current++] = getClassifier().getClass().getName();    }    options[current++] = "--";    System.arraycopy(classifierOptions, 0, options, current, 		     classifierOptions.length);    current += classifierOptions.length;    while (current < options.length) {      options[current++] = "";    }    return options;  }    /**   * Set the classifier for boosting.    *   * @param newClassifier the Classifier to use.   */  public void setClassifier(Classifier newClassifier) {    m_Classifier = (DistributionClassifier)newClassifier;  }  /**   * Get the classifier used as the classifier   *   * @return the classifier used as the classifier   */  public Classifier getClassifier() {    return m_Classifier;  }  /**   * Sets whether the discretizer optimizes the number of bins   *   * @param optimize true if the discretizer should optimize the number of bins   */  public void setOptimizeBins(boolean optimize) {    m_OptimizeBins = optimize;  }  /**   * Gets whether the discretizer optimizes the number of bins   *   * @return true if the discretizer should optimize the number of bins   */  public boolean getOptimizeBins() {    return m_OptimizeBins;  }  /**   * Sets whether debugging output will be printed   *   * @param debug true if debug output should be printed   */  public void setDebug(boolean debug) {    m_Debug = debug;  }  /**   * Gets whether debugging output will be printed   *   * @return true if debug output should be printed   */  public boolean getDebug() {    return m_Debug;  }  /**   * Sets the number of bins the class attribute will be discretized into.   *   * @param numBins the number of bins to use   */  public void setNumBins(int numBins) {    m_NumBins = numBins;  }  /**   * Gets the number of bins the class attribute will be discretized into.   *   * @return the number of bins to use   */  public int getNumBins() {    return m_NumBins;  }  /**   * Returns a description of the classifier.   *   * @return a description of the classifier as a string.   */  public String toString() {    StringBuffer text = new StringBuffer();    int attIndex;    text.append("Regression by discretization");    if (m_ClassMeans == null) {      text.append(": No model built yet.");    } else {      text.append("\n\nClass attribute discretized into " 		  + m_ClassMeans.length + " values\n");      text.append("\nSubclassifier: " + m_Classifier.getClass().getName() 		  + "\n\n");      text.append(m_Classifier.toString());    }    return text.toString();  }   /**   * Main method for testing this class.   *   * @param argv the options   */  public static void main(String [] argv) {    try {      System.out.println(Evaluation.evaluateModel(			 new RegressionByDiscretization(), argv));    } catch (Exception ex) {      ex.printStackTrace();      System.out.println(ex.getMessage());    }  }}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -