⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 costsensitiveclassifier.java

📁 wekaUT是 university texas austin 开发的基于weka的半指导学习(semi supervised learning)的分类器
💻 JAVA
📖 第 1 页 / 共 2 页
字号:
   * Sets the source location of the cost matrix. Values other than   * MATRIX_ON_DEMAND or MATRIX_SUPPLIED will be ignored.   *   * @param newMethod the cost matrix location method.   */  public void setCostMatrixSource(SelectedTag newMethod) {        if (newMethod.getTags() == TAGS_MATRIX_SOURCE) {      m_MatrixSource = newMethod.getSelectedTag().getID();    }  }  /**   * @return tip text for this property suitable for   * displaying in the explorer/experimenter gui   */  public String onDemandDirectoryTipText() {    return "Sets the directory where cost files are loaded from. This option "      + "is used when the costMatrixSource is set to \"On Demand\".";  }  /**   * Returns the directory that will be searched for cost files when   * loading on demand.   *   * @return The cost file search directory.   */  public File getOnDemandDirectory() {    return m_OnDemandDirectory;  }  /**   * Sets the directory that will be searched for cost files when   * loading on demand.   *   * @param newDir The cost file search directory.   */  public void setOnDemandDirectory(File newDir) {    if (newDir.isDirectory()) {      m_OnDemandDirectory = newDir;    } else {      m_OnDemandDirectory = new File(newDir.getParent());    }    m_MatrixSource = MATRIX_ON_DEMAND;  }  /**   * @return tip text for this property suitable for   * displaying in the explorer/experimenter gui   */  public String minimizeExpectedCostTipText() {    return "Sets whether the minimum expected cost criteria will be used. If "      + "this is false, the training data will be reweighted according to the "      + "costs assigned to each class. If true, the minimum expected cost "      + "criteria will be used.";  }  /**   * Gets the value of MinimizeExpectedCost.   *   * @return Value of MinimizeExpectedCost.   */  public boolean getMinimizeExpectedCost() {        return m_MinimizeExpectedCost;  }    /**   * Set the value of MinimizeExpectedCost.   *   * @param newMinimizeExpectedCost Value to assign to MinimizeExpectedCost.   */  public void setMinimizeExpectedCost(boolean newMinimizeExpectedCost) {        m_MinimizeExpectedCost = newMinimizeExpectedCost;  }    /**   * @return tip text for this property suitable for   * displaying in the explorer/experimenter gui   */  public String classifierTipText() {    return "Sets the Classifier used as the basis for "      + "the cost-sensitive classification. This must be a "      + "DistributionClassifier if using the minimum expected cost criteria.";  }  /**   * Sets the distribution classifier   *   * @param classifier the classifier with all options set.   */  public void setClassifier(Classifier classifier) {    m_Classifier = classifier;  }  /**   * Gets the classifier used.   *   * @return the classifier   */  public Classifier getClassifier() {    return m_Classifier;  }    /**   * Gets the classifier specification string, which contains the class name of   * the classifier and any options to the classifier   *   * @return the classifier string.   */  protected String getClassifierSpec() {        Classifier c = getClassifier();    if (c instanceof OptionHandler) {      return c.getClass().getName() + " "	+ Utils.joinOptions(((OptionHandler)c).getOptions());    }    return c.getClass().getName();  }    /**   * @return tip text for this property suitable for   * displaying in the explorer/experimenter gui   */  public String costMatrixTipText() {    return "Sets the cost matrix explicitly. This matrix is used if the "      + "costMatrixSource property is set to \"Supplied\".";  }  /**   * Gets the misclassification cost matrix.   *   * @return the cost matrix   */  public CostMatrix getCostMatrix() {        return m_CostMatrix;  }    /**   * Sets the misclassification cost matrix.   *   * @param the cost matrix   */  public void setCostMatrix(CostMatrix newCostMatrix) {        m_CostMatrix = newCostMatrix;    m_MatrixSource = MATRIX_SUPPLIED;  }    /**   * @return tip text for this property suitable for   * displaying in the explorer/experimenter gui   */  public String seedTipText() {    return "Sets the random number seed when reweighting instances. Ignored "      + "when using minimum expected cost criteria.";  }    /**   * Set seed for resampling.   *   * @param seed the seed for resampling   */  public void setSeed(int seed) {    m_Seed = seed;  }  /**   * Get seed for resampling.   *   * @return the seed for resampling   */  public int getSeed() {    return m_Seed;  }  /**   * Builds the model of the base learner.   *   * @param data the training data   * @exception Exception if the classifier could not be built successfully   */  public void buildClassifier(Instances data) throws Exception {    if (m_Classifier == null) {      throw new Exception("No base classifier has been set!");    }    if (m_MinimizeExpectedCost 	&& !(m_Classifier instanceof DistributionClassifier)) {      throw new Exception("Classifier must be a DistributionClassifier to use"			  + " minimum expected cost method");    }    if (!data.classAttribute().isNominal()) {      throw new UnsupportedClassTypeException("Class attribute must be nominal!");    }    if (m_MatrixSource == MATRIX_ON_DEMAND) {      String costName = data.relationName() + CostMatrix.FILE_EXTENSION;      File costFile = new File(getOnDemandDirectory(), costName);      if (!costFile.exists()) {        throw new Exception("On-demand cost file doesn't exist: " + costFile);      }      setCostMatrix(new CostMatrix(new BufferedReader(                                   new FileReader(costFile))));    } else if (m_CostMatrix == null) {      // try loading an old format cost file      m_CostMatrix = new CostMatrix(data.numClasses());      m_CostMatrix.readOldFormat(new BufferedReader(			       new FileReader(m_CostFile)));    }    if (!m_MinimizeExpectedCost) {      Random random = null;      if (!(m_Classifier instanceof WeightedInstancesHandler)) {	random = new Random(m_Seed);      }      data = m_CostMatrix.applyCostMatrix(data, random);    }    m_Classifier.buildClassifier(data);  }  /**   * Classifies a given instance by choosing the class with the minimum   * expected misclassification cost.   *   * @param instance the instance to be classified   * @exception Exception if instance could not be classified   * successfully   */  public double classifyInstance(Instance instance) throws Exception {    if (!m_MinimizeExpectedCost) {      return m_Classifier.classifyInstance(instance);    }    double [] pred = ((DistributionClassifier) m_Classifier)      .distributionForInstance(instance);    double [] costs = m_CostMatrix.expectedCosts(pred);    /*    for (int i = 0; i < pred.length; i++) {      System.out.print(pred[i] + " ");    }    System.out.println();    for (int i = 0; i < costs.length; i++) {      System.out.print(costs[i] + " ");    }    System.out.println("\n");    */        return Utils.minIndex(costs);  }  /**   * Returns graph describing the classifier (if possible).   *   * @return the graph of the classifier in dotty format   * @exception Exception if the classifier cannot be graphed   */  public String graph() throws Exception {        if (m_Classifier instanceof Drawable)      return ((Drawable)m_Classifier).graph();    else throw new Exception("Classifier: " + getClassifierSpec()			     + " cannot be graphed");  }  /**   * Output a representation of this classifier   */  public String toString() {    if (m_Classifier == null) {      return "CostSensitiveClassifier: No model built yet.";    }    String result = "CostSensitiveClassifier using ";      if (m_MinimizeExpectedCost) {	result += "minimized expected misclasification cost\n";      } else {	result += "reweighted training instances\n";      }      result += "\n" + getClassifierSpec()	+ "\n\nClassifier Model\n"	+ m_Classifier.toString()	+ "\n\nCost Matrix\n"	+ m_CostMatrix.toString();    return result;  }  /**   * Main method for testing this class.   *   * @param argv should contain the following arguments:   * -t training file [-T test file] [-c class index]   */  public static void main(String [] argv) {    try {      System.out.println(Evaluation			 .evaluateModel(new CostSensitiveClassifier(),					argv));    } catch (Exception e) {      System.err.println(e.getMessage());    }  }}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -