📄 costsensitiveclassifier.java
字号:
/* * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. *//* * CostSensitiveClassifier.java * Copyright (C) 2002 University of Waikato * */package weka.classifiers.meta;import weka.classifiers.Classifier;import weka.classifiers.CostMatrix;import weka.classifiers.DistributionClassifier;import weka.classifiers.Evaluation;import weka.classifiers.rules.ZeroR;import java.io.BufferedReader;import java.io.File;import java.io.FileReader;import java.util.Enumeration;import java.util.Random;import java.util.Vector;import weka.core.Instance;import weka.core.Instances;import weka.core.Option;import weka.core.OptionHandler;import weka.core.SelectedTag;import weka.core.Tag;import weka.core.Utils;import weka.core.WeightedInstancesHandler;import weka.core.Drawable;import weka.core.UnsupportedClassTypeException;import weka.filters.Filter;/** * This metaclassifier makes its base classifier cost-sensitive. Two methods * can be used to introduce cost-sensitivity: reweighting training instances * according to the total cost assigned to each class; or predicting the class * with minimum expected misclassification cost (rather than the most likely * class). The minimum expected cost approach requires that the base classifier * be a DistributionClassifier. <p> * * Valid options are:<p> * * -M <br> * Minimize expected misclassification cost. The base classifier must * produce probability estimates i.e. a DistributionClassifier). * (default is to reweight training instances according to costs per class)<p> * * -W classname <br> * Specify the full class name of a classifier (required).<p> * * -C cost file <br> * File name of a cost matrix to use. If this is not supplied, a cost * matrix will be loaded on demand. The name of the on-demand file * is the relation name of the training data plus ".cost", and the * path to the on-demand file is specified with the -D option.<p> * * -D directory <br> * Name of a directory to search for cost files when loading costs on demand * (default current directory). <p> * * -S seed <br> * Random number seed used when reweighting by resampling (default 1).<p> * * Options after -- are passed to the designated classifier.<p> * * @author Len Trigg (len@reeltwo.com) * @version $Revision: 1.1.1.1 $ */public class CostSensitiveClassifier extends Classifier implements OptionHandler, Drawable { /* Specify possible sources of the cost matrix */ public static final int MATRIX_ON_DEMAND = 1; public static final int MATRIX_SUPPLIED = 2; public static final Tag [] TAGS_MATRIX_SOURCE = { new Tag(MATRIX_ON_DEMAND, "Load cost matrix on demand"), new Tag(MATRIX_SUPPLIED, "Use explicit cost matrix") }; /** Indicates the current cost matrix source */ protected int m_MatrixSource = MATRIX_ON_DEMAND; /** * The directory used when loading cost files on demand, null indicates * current directory */ protected File m_OnDemandDirectory = new File(System.getProperty("user.dir")); /** The name of the cost file, for command line options */ protected String m_CostFile; /** The cost matrix */ protected CostMatrix m_CostMatrix = new CostMatrix(1); /** The classifier */ protected Classifier m_Classifier = new weka.classifiers.rules.ZeroR(); /** Seed for reweighting using resampling. */ protected int m_Seed = 1; /** * True if the costs should be used by selecting the minimum expected * cost (false means weight training data by the costs) */ protected boolean m_MinimizeExpectedCost; /** * Returns an enumeration describing the available options. * * @return an enumeration of all the available options. */ public Enumeration listOptions() { Vector newVector = new Vector(5); newVector.addElement(new Option( "\tMinimize expected misclassification cost. The\n" +"\tbase classifier must produce probability estimates\n" +"\t(i.e. a DistributionClassifier). Default is to\n" +"\treweight training instances according to costs per class", "M", 0, "-M")); newVector.addElement(new Option( "\tFull class name of classifier to use. (required)\n" + "\teg: weka.classifiers.bayes.NaiveBayes", "W", 1, "-W <class name>")); newVector.addElement(new Option( "\tFile name of a cost matrix to use. If this is not supplied,\n" +"\ta cost matrix will be loaded on demand. The name of the\n" +"\ton-demand file is the relation name of the training data\n" +"\tplus \".cost\", and the path to the on-demand file is\n" +"\tspecified with the -D option.", "C", 1, "-C <cost file name>")); newVector.addElement(new Option( "\tName of a directory to search for cost files when loading\n" +"\tcosts on demand (default current directory).", "D", 1, "-D <directory>")); newVector.addElement(new Option( "\tSeed used when reweighting via resampling. (Default 1)", "S", 1, "-S <num>")); return newVector.elements(); } /** * Parses a given list of options. Valid options are:<p> * * -M <br> * Minimize expected misclassification cost. The base classifier must * produce probability estimates i.e. a DistributionClassifier). * (default is to reweight training instances according to costs per class)<p> * * -W classname <br> * Specify the full class name of a classifier (required).<p> * * -C cost file <br> * File name of a cost matrix to use. If this is not supplied, a cost * matrix will be loaded on demand. The name of the on-demand file * is the relation name of the training data plus ".cost", and the * path to the on-demand file is specified with the -D option.<p> * * -D directory <br> * Name of a directory to search for cost files when loading costs on demand * (default current directory). <p> * * -S seed <br> * Random number seed used when reweighting by resampling (default 1).<p> * * Options after -- are passed to the designated classifier.<p> * * @param options the list of options as an array of strings * @exception Exception if an option is not supported */ public void setOptions(String[] options) throws Exception { setMinimizeExpectedCost(Utils.getFlag('M', options)); String seedString = Utils.getOption('S', options); if (seedString.length() != 0) { setSeed(Integer.parseInt(seedString)); } else { setSeed(1); } String classifierName = Utils.getOption('W', options); if (classifierName.length() == 0) { throw new Exception("A classifier must be specified with" + " the -W option."); } setClassifier(Classifier.forName(classifierName, Utils.partitionOptions(options))); String costFile = Utils.getOption('C', options); if (costFile.length() != 0) { try { setCostMatrix(new CostMatrix(new BufferedReader( new FileReader(costFile)))); } catch (Exception ex) { // now flag as possible old format cost matrix. Delay cost matrix // loading until buildClassifer is called setCostMatrix(null); } setCostMatrixSource(new SelectedTag(MATRIX_SUPPLIED, TAGS_MATRIX_SOURCE)); m_CostFile = costFile; } else { setCostMatrixSource(new SelectedTag(MATRIX_ON_DEMAND, TAGS_MATRIX_SOURCE)); } String demandDir = Utils.getOption('D', options); if (demandDir.length() != 0) { setOnDemandDirectory(new File(demandDir)); } } /** * Gets the current settings of the Classifier. * * @return an array of strings suitable for passing to setOptions */ public String [] getOptions() { String [] classifierOptions = new String [0]; if ((m_Classifier != null) && (m_Classifier instanceof OptionHandler)) { classifierOptions = ((OptionHandler)m_Classifier).getOptions(); } String [] options = new String [classifierOptions.length + 9]; int current = 0; if (m_MatrixSource == MATRIX_SUPPLIED) { if (m_CostFile != null) { options[current++] = "-C"; options[current++] = "" + m_CostFile; } } else { options[current++] = "-D"; options[current++] = "" + getOnDemandDirectory(); } options[current++] = "-S"; options[current++] = "" + getSeed(); if (getMinimizeExpectedCost()) { options[current++] = "-M"; } if (getClassifier() != null) { options[current++] = "-W"; options[current++] = getClassifier().getClass().getName(); } options[current++] = "--"; System.arraycopy(classifierOptions, 0, options, current, classifierOptions.length); current += classifierOptions.length; while (current < options.length) { options[current++] = ""; } return options; } /** * @return a description of the classifier suitable for * displaying in the explorer/experimenter gui */ public String globalInfo() { return "A metaclassifier that makes its base classifier cost-sensitive. " + "Two methods can be used to introduce cost-sensitivity: reweighting " + "training instances according to the total cost assigned to each " + "class; or predicting the class with minimum expected " + "misclassification cost (rather than the most likely class). The " + "minimum expected cost approach requires that the base classifier be " + "a DistributionClassifier (and is optimal if given accurate " + "probabilities by it's base classifier). Performance can often be " + "improved by using a Bagged classifier to improve the probability " + "estimates of the base classifier."; } /** * @return tip text for this property suitable for * displaying in the explorer/experimenter gui */ public String costMatrixSourceTipText() { return "Sets where to get the cost matrix. The two options are" + "to use the supplied explicit cost matrix (the setting of the " + "costMatrix property), or to load a cost matrix from a file when " + "required (this file will be loaded from the directory set by the " + "onDemandDirectory property and will be named relation_name" + CostMatrix.FILE_EXTENSION + ")."; } /** * Gets the source location method of the cost matrix. Will be one of * MATRIX_ON_DEMAND or MATRIX_SUPPLIED. * * @return the cost matrix source. */ public SelectedTag getCostMatrixSource() { return new SelectedTag(m_MatrixSource, TAGS_MATRIX_SOURCE); } /**
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -