📄 crate.java
字号:
/* * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. *//* * Crate.java * Copyright (C) 2002 Prem Melville * *///!! WARNING: Under Development !!package weka.classifiers.meta;import weka.classifiers.*;import java.util.*;import weka.core.*;import weka.experiment.*;/** * CRATE (Committee Regressor using Artificial Training Examples) is a * meta-learner for building diverse ensembles of regressors by * adding specially constructed artificial training * examples. Comprehensive experiments have demonstrated that this * technique is consistently more accurate than bagging and more * accurate that boosting when training data is limited. For more * details see <p> * * Prem Melville and Raymond J. Mooney. <i>Constructing diverse * classifier ensembles using artificial training examples.</i> * Proceedings of the Seventeeth International Joint Conference on * Artificial Intelligence 2003.<BR><BR> * * Valid options are:<p> * * -D <br> * Turn on debugging output.<p> * * -W classname <br> * Specify the full class name of a weak classifier as the basis for * Crate (default weka.classifiers.trees.j48.J48()).<p> * * -I num <br> * Specify the desired size of the committee (default 15). <p> * * -M iterations <br> * Set the maximum number of Crate iterations (default 50). <p> * * -S seed <br> * Seed for random number generator. (default 0).<p> * * -R factor <br> * Factor that determines number of artificial examples to generate. <p> * * Options after -- are passed to the designated classifier.<p> * * @author Prem Melville (melville@cs.utexas.edu) */public class Crate extends Classifier implements OptionHandler{ /** Set to true to get debugging output. */ protected boolean m_Debug = true; /** The model base classifier to use. */ protected Classifier m_Classifier = new weka.classifiers.trees.m5.M5P(); /** Vector of classifiers that make up the committee/ensemble. */ protected Vector m_Committee = null; /** The desired ensemble size. */ protected int m_DesiredSize = 25; /** The maximum number of Crate iterations to run. */ protected int m_NumIterations = 150; /** The seed for random number generation. */ protected int m_Seed = 0; /** Amount of artificial/random instances to use - specified as a fraction of the training data size. */ protected double m_ArtSize = 1.0 ; /** The random number generator. */ protected Random m_Random = new Random(0); /** Attribute statistics - used for generating artificial examples. */ protected Vector m_AttributeStats = null; /** Factor specifying desired amount of diversity */ protected double m_Alpha = 1.5; /** Evaluator */ protected Evaluation m_Evaluation; /** Choice of error measure to optimize for */ static final int RMS = 0, MAE = 1, ROOT_RELATIVE_SQUARED = 2; /** Error measure to optimize for */ protected int m_ErrorMeasure = RMS; /** * Returns an enumeration describing the available options * * @return an enumeration of all the available options */ public Enumeration listOptions() { Vector newVector = new Vector(10); newVector.addElement(new Option( "\tTurn on debugging output.", "D", 0, "-D")); newVector.addElement(new Option( "\tDesired size of ensemble.\n" + "\t(default 15)", "I", 1, "-I")); newVector.addElement(new Option( "\tMaximum number of Crate iterations.\n" + "\t(default 50)", "M", 1, "-M")); newVector.addElement(new Option( "\tFull name of base classifier.\n" + "\t(default weka.classifiers.trees.j48.J48)", "W", 1, "-W")); newVector.addElement(new Option( "\tSeed for random number generator.\n" +"\tIf set to -1, use a random seed.\n" + "\t(default 0)", "S", 1, "-S")); newVector.addElement(new Option( "\tFactor specifying desired amount of diversity.\n" + "\t(default 1.5)", "V", 1, "-V")); newVector.addElement(new Option( "\tFactor that determines number of artificial examples to generate.\n" +"\tSpecified proportional to training set size.\n" + "\t(default 1.0)", "R", 1, "-R")); newVector.addElement(new Option( "\tError measure to evaluate for.\n" +"\t0=RMS, 1=MAE, 2=Root Relative Squared Error\n" + "\t(default 0)", "E", 1, "-E")); if ((m_Classifier != null) && (m_Classifier instanceof OptionHandler)) { newVector.addElement(new Option( "", "", 0, "\nOptions specific to classifier " + m_Classifier.getClass().getName() + ":")); Enumeration enum = ((OptionHandler)m_Classifier).listOptions(); while (enum.hasMoreElements()) { newVector.addElement(enum.nextElement()); } } return newVector.elements(); } /** * Parses a given list of options. Valid options are:<p> * * -D <br> * Turn on debugging output.<p> * * -W classname <br> * Specify the full class name of a weak classifier as the basis for * Crate (required).<p> * * -I num <br> * Specify the desired size of the committee (default 15). <p> * * -M iterations <br> * Set the maximum number of Crate iterations (default 50). <p> * * -S seed <br> * Seed for random number generator. (default 0).<p> * * -R factor <br> * Factor that determines number of artificial examples to generate. <p> * * Options after -- are passed to the designated classifier.<p> * * @param options the list of options as an array of strings * @exception Exception if an option is not supported */ public void setOptions(String[] options) throws Exception { setDebug(Utils.getFlag('D', options)); String desiredSize = Utils.getOption('I', options); if (desiredSize.length() != 0) { setDesiredSize(Integer.parseInt(desiredSize)); } else { setDesiredSize(15); } String maxIterations = Utils.getOption('M', options); if (maxIterations.length() != 0) { setNumIterations(Integer.parseInt(maxIterations)); } else { setNumIterations(50); } String seed = Utils.getOption('S', options); if (seed.length() != 0) { setSeed(Integer.parseInt(seed)); } else { setSeed(0); } String artSize = Utils.getOption('R', options); if (artSize.length() != 0) { setArtificialSize(Double.parseDouble(artSize)); } else { setArtificialSize(1.0); } String alpha = Utils.getOption('V', options); if (alpha.length() != 0) { setAlpha(Double.parseDouble(alpha)); } else { setAlpha(1.5); } String errorMeasure = Utils.getOption('E', options); if (errorMeasure.length() != 0) { setErrorMeasure(Integer.parseInt(errorMeasure)); } else { setErrorMeasure(0); } String classifierName = Utils.getOption('W', options); if (classifierName.length() == 0) { throw new Exception("A classifier must be specified with" + " the -W option."); } setClassifier(Classifier.forName(classifierName, Utils.partitionOptions(options))); } /** * Gets the current settings of the Classifier. * * @return an array of strings suitable for passing to setOptions */ public String [] getOptions() { String [] classifierOptions = new String [0]; if ((m_Classifier != null) && (m_Classifier instanceof OptionHandler)) { classifierOptions = ((OptionHandler)m_Classifier).getOptions(); } String [] options = new String [classifierOptions.length + 16]; int current = 0; if (getDebug()) { options[current++] = "-D"; } options[current++] = "-S"; options[current++] = "" + getSeed(); options[current++] = "-I"; options[current++] = "" + getDesiredSize(); options[current++] = "-M"; options[current++] = "" + getNumIterations(); options[current++] = "-R"; options[current++] = "" + getArtificialSize(); options[current++] = "-V"; options[current++] = "" + getAlpha(); options[current++] = "-E"; options[current++] = "" + getErrorMeasure(); if (getClassifier() != null) { options[current++] = "-W"; options[current++] = getClassifier().getClass().getName(); } options[current++] = "--"; System.arraycopy(classifierOptions, 0, options, current, classifierOptions.length); current += classifierOptions.length; while (current < options.length) { options[current++] = ""; } return options; } /** * Get the value of errorMeasure. * @return value of errorMeasure. */ public int getErrorMeasure() { return m_ErrorMeasure; } /** * Set the value of errorMeasure. * @param v Value to assign to errorMeasure. */ public void setErrorMeasure(int v) { m_ErrorMeasure = v; } /** * Get the value of Alpha. * @return value of Alpha. */ public double getAlpha() { return m_Alpha; } /** * Set the value of Alpha. * @param v Value to assign to Alpha. */ public void setAlpha(double v) { m_Alpha = v; } /** * Set debugging mode * * @param debug true if debug output should be printed */ public void setDebug(boolean debug) { m_Debug = debug; } /** * Get whether debugging is turned on * * @return true if debugging output is on */ public boolean getDebug() { return m_Debug; } /** * Set the base classifier for Crate. * * @param newClassifier the Classifier to use. */ public void setClassifier(Classifier newClassifier) { m_Classifier = newClassifier; } /** * Get the classifier used as the base classifier * * @return the classifier used as the classifier */ public Classifier getClassifier() { return m_Classifier; } /** * Factor that determines number of artificial examples to generate. * * @return factor that determines number of artificial examples to generate */
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -