⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 testensembleclassifier.java

📁 wekaUT是 university texas austin 开发的基于weka的半指导学习(semi supervised learning)的分类器
💻 JAVA
字号:
/* *    This program is free software; you can redistribute it and/or modify *    it under the terms of the GNU General Public License as published by *    the Free Software Foundation; either version 2 of the License, or *    (at your option) any later version. * *    This program is distributed in the hope that it will be useful, *    but WITHOUT ANY WARRANTY; without even the implied warranty of *    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the *    GNU General Public License for more details. * *    You should have received a copy of the GNU General Public License *    along with this program; if not, write to the Free Software *    Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. *//* *    TestEnsembleClassifier *    Copyright (C) 2003 Prem Melville * */package weka.classifiers.meta;import weka.classifiers.*;import java.util.*;import weka.core.*;/** * This class is for testing Ensemble evaluation */public class TestEnsembleClassifier extends EnsembleClassifier{     protected int m_NumIterations=21;    protected Random random = new Random();      /**   *   * @param data the training data to be used for generating the   * bagged classifier.   * @exception Exception if the classifier could not be built successfully   */  public void buildClassifier(Instances data) throws Exception {      //Initialize measures      initMeasures();          //initialize ensemble wts to be equal     m_EnsembleWts = new double [m_NumIterations];    for(int j=0; j<m_NumIterations; j++)	m_EnsembleWts[j] = 1.0;    computeEnsembleMeasures(data);  }  /**   * Calculates the class membership probabilities for the given test instance.   *   * @param instance the instance to be classified   * @return preedicted class probability distribution   * @exception Exception if distribution can't be computed successfully   */  public double[] distributionForInstance(Instance instance) throws Exception {      double [] sums = new double [instance.numClasses()];      double [] preds = getEnsemblePredictions(instance);          for (int i = 0; i < m_NumIterations; i++) {	  sums[(int)preds[i]]++;      }            Utils.normalize(sums);      return sums;  }        /** Returns class predictions of each ensemble member */    public double []getEnsemblePredictions(Instance instance) throws Exception{	double preds[] = new double [m_NumIterations];	double actualClass;		if(instance.classIsMissing()) {	    actualClass = random.nextInt(instance.numClasses());	    //for(int i=0; i<m_NumIterations; i++) preds[i] = actualClass;	    for(int i=0; i<m_NumIterations; i++) preds[i] = 1.0;	}	else {	    actualClass = instance.classValue();	    	    for(int i=0; i<m_NumIterations; i++){		if(random.nextFloat()<0.4)		    preds[i] = actualClass;		else		    preds[i] = (actualClass+1)%instance.numClasses();	    }	}	return preds;    }    /**      * Returns vote weights of ensemble members.     *     * @return vote weights of ensemble members     */    public double []getEnsembleWts(){	return m_EnsembleWts;    }        /** Returns size of ensemble */    public double getEnsembleSize(){	return m_NumIterations;    }  /**   * Main method for testing this class.   *   * @param argv the options   */  public static void main(String [] argv) {       try {      System.out.println(Evaluation.			 evaluateModel(new Bagging(), argv));    } catch (Exception e) {      System.err.println(e.getMessage());    }  }}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -