⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 metacost.java

📁 wekaUT是 university texas austin 开发的基于weka的半指导学习(semi supervised learning)的分类器
💻 JAVA
📖 第 1 页 / 共 2 页
字号:
    while (current < options.length) {      options[current++] = "";    }    return options;  }  /**   * Gets the source location method of the cost matrix. Will be one of   * MATRIX_ON_DEMAND or MATRIX_SUPPLIED.   *   * @return the cost matrix source.   */  public SelectedTag getCostMatrixSource() {    return new SelectedTag(m_MatrixSource, TAGS_MATRIX_SOURCE);  }    /**   * Sets the source location of the cost matrix. Values other than   * MATRIX_ON_DEMAND or MATRIX_SUPPLIED will be ignored.   *   * @param newMethod the cost matrix location method.   */  public void setCostMatrixSource(SelectedTag newMethod) {        if (newMethod.getTags() == TAGS_MATRIX_SOURCE) {      m_MatrixSource = newMethod.getSelectedTag().getID();    }  }  /**   * Returns the directory that will be searched for cost files when   * loading on demand.   *   * @return The cost file search directory.   */  public File getOnDemandDirectory() {    return m_OnDemandDirectory;  }  /**   * Sets the directory that will be searched for cost files when   * loading on demand.   *   * @param newDir The cost file search directory.   */  public void setOnDemandDirectory(File newDir) {    if (newDir.isDirectory()) {      m_OnDemandDirectory = newDir;    } else {      m_OnDemandDirectory = new File(newDir.getParent());    }    m_MatrixSource = MATRIX_ON_DEMAND;  }    /**   * Sets the distribution classifier   *   * @param classifier the distribution classifier with all options set.   */  public void setClassifier(Classifier classifier) {    m_Classifier = classifier;  }  /**   * Gets the distribution classifier used.   *   * @return the classifier   */  public Classifier getClassifier() {    return m_Classifier;  }    /**   * Gets the classifier specification string, which contains the class name of   * the classifier and any options to the classifier   *   * @return the classifier string.   */  protected String getClassifierSpec() {        Classifier c = getClassifier();    if (c instanceof OptionHandler) {      return c.getClass().getName() + " "	+ Utils.joinOptions(((OptionHandler)c).getOptions());    }    return c.getClass().getName();  }  /**   * Gets the size of each bag, as a percentage of the training set size.   *   * @return the bag size, as a percentage.   */  public int getBagSizePercent() {    return m_BagSizePercent;  }    /**   * Sets the size of each bag, as a percentage of the training set size.   *   * @param newBagSizePercent the bag size, as a percentage.   */  public void setBagSizePercent(int newBagSizePercent) {    m_BagSizePercent = newBagSizePercent;  }    /**   * Sets the number of bagging iterations   */  public void setNumIterations(int numIterations) {    m_NumIterations = numIterations;  }  /**   * Gets the number of bagging iterations   *   * @return the maximum number of bagging iterations   */  public int getNumIterations() {        return m_NumIterations;  }  /**   * Gets the misclassification cost matrix.   *   * @return the cost matrix   */  public CostMatrix getCostMatrix() {        return m_CostMatrix;  }    /**   * Sets the misclassification cost matrix.   *   * @param the cost matrix   */  public void setCostMatrix(CostMatrix newCostMatrix) {        m_CostMatrix = newCostMatrix;    m_MatrixSource = MATRIX_SUPPLIED;  }    /**   * Set seed for resampling.   *   * @param seed the seed for resampling   */  public void setSeed(int seed) {    m_Seed = seed;  }  /**   * Get seed for resampling.   *   * @return the seed for resampling   */  public int getSeed() {    return m_Seed;  }  /**   * Builds the model of the base learner.   *   * @param data the training data   * @exception Exception if the classifier could not be built successfully   */  public void buildClassifier(Instances data) throws Exception {    if (m_Classifier == null) {      throw new Exception("No base classifier has been set!");    }    if (!data.classAttribute().isNominal()) {      throw new UnsupportedClassTypeException("Class attribute must be nominal!");    }    if (m_MatrixSource == MATRIX_ON_DEMAND) {      String costName = data.relationName() + CostMatrix.FILE_EXTENSION;      File costFile = new File(getOnDemandDirectory(), costName);      if (!costFile.exists()) {        throw new Exception("On-demand cost file doesn't exist: " + costFile);      }      setCostMatrix(new CostMatrix(new BufferedReader(                                   new FileReader(costFile))));    }    // Set up the bagger    Bagging bagger = new Bagging();    bagger.setClassifier(getClassifier());    bagger.setSeed(getSeed());    bagger.setNumIterations(getNumIterations());    bagger.setBagSizePercent(getBagSizePercent());    bagger.buildClassifier(data);        // Use the bagger to reassign class values according to minimum expected    // cost    Instances newData = new Instances(data);    for (int i = 0; i < newData.numInstances(); i++) {      Instance current = newData.instance(i);      double [] pred = bagger.distributionForInstance(current);      int minCostPred = Utils.minIndex(m_CostMatrix.expectedCosts(pred));      current.setClassValue(minCostPred);    }    // Build a classifier using the reassigned data    m_Classifier.buildClassifier(newData);  }  /**   * Classifies a given test instance.   *   * @param instance the instance to be classified   * @exception Exception if instance could not be classified   * successfully   */  public double classifyInstance(Instance instance) throws Exception {    return m_Classifier.classifyInstance(instance);  }  /**   * Output a representation of this classifier   */  public String toString() {    if (m_Classifier == null) {      return "MetaCost: No model built yet.";    }    String result = "MetaCost cost sensitive classifier induction";    result += "\nOptions: " + Utils.joinOptions(getOptions());    result += "\nBase learner: " + getClassifierSpec()      + "\n\nClassifier Model\n"      + m_Classifier.toString()      + "\n\nCost Matrix\n"      + m_CostMatrix.toString();        return result;  }  /**   * Main method for testing this class.   *   * @param argv should contain the following arguments:   * -t training file [-T test file] [-c class index]   */  public static void main(String [] argv) {    try {      System.out.println(Evaluation			 .evaluateModel(new MetaCost(),					argv));    } catch (Exception e) {      System.err.println(e.getMessage());    }  }}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -