📄 metacost.java
字号:
while (current < options.length) { options[current++] = ""; } return options; } /** * Gets the source location method of the cost matrix. Will be one of * MATRIX_ON_DEMAND or MATRIX_SUPPLIED. * * @return the cost matrix source. */ public SelectedTag getCostMatrixSource() { return new SelectedTag(m_MatrixSource, TAGS_MATRIX_SOURCE); } /** * Sets the source location of the cost matrix. Values other than * MATRIX_ON_DEMAND or MATRIX_SUPPLIED will be ignored. * * @param newMethod the cost matrix location method. */ public void setCostMatrixSource(SelectedTag newMethod) { if (newMethod.getTags() == TAGS_MATRIX_SOURCE) { m_MatrixSource = newMethod.getSelectedTag().getID(); } } /** * Returns the directory that will be searched for cost files when * loading on demand. * * @return The cost file search directory. */ public File getOnDemandDirectory() { return m_OnDemandDirectory; } /** * Sets the directory that will be searched for cost files when * loading on demand. * * @param newDir The cost file search directory. */ public void setOnDemandDirectory(File newDir) { if (newDir.isDirectory()) { m_OnDemandDirectory = newDir; } else { m_OnDemandDirectory = new File(newDir.getParent()); } m_MatrixSource = MATRIX_ON_DEMAND; } /** * Sets the distribution classifier * * @param classifier the distribution classifier with all options set. */ public void setClassifier(Classifier classifier) { m_Classifier = classifier; } /** * Gets the distribution classifier used. * * @return the classifier */ public Classifier getClassifier() { return m_Classifier; } /** * Gets the classifier specification string, which contains the class name of * the classifier and any options to the classifier * * @return the classifier string. */ protected String getClassifierSpec() { Classifier c = getClassifier(); if (c instanceof OptionHandler) { return c.getClass().getName() + " " + Utils.joinOptions(((OptionHandler)c).getOptions()); } return c.getClass().getName(); } /** * Gets the size of each bag, as a percentage of the training set size. * * @return the bag size, as a percentage. */ public int getBagSizePercent() { return m_BagSizePercent; } /** * Sets the size of each bag, as a percentage of the training set size. * * @param newBagSizePercent the bag size, as a percentage. */ public void setBagSizePercent(int newBagSizePercent) { m_BagSizePercent = newBagSizePercent; } /** * Sets the number of bagging iterations */ public void setNumIterations(int numIterations) { m_NumIterations = numIterations; } /** * Gets the number of bagging iterations * * @return the maximum number of bagging iterations */ public int getNumIterations() { return m_NumIterations; } /** * Gets the misclassification cost matrix. * * @return the cost matrix */ public CostMatrix getCostMatrix() { return m_CostMatrix; } /** * Sets the misclassification cost matrix. * * @param the cost matrix */ public void setCostMatrix(CostMatrix newCostMatrix) { m_CostMatrix = newCostMatrix; m_MatrixSource = MATRIX_SUPPLIED; } /** * Set seed for resampling. * * @param seed the seed for resampling */ public void setSeed(int seed) { m_Seed = seed; } /** * Get seed for resampling. * * @return the seed for resampling */ public int getSeed() { return m_Seed; } /** * Builds the model of the base learner. * * @param data the training data * @exception Exception if the classifier could not be built successfully */ public void buildClassifier(Instances data) throws Exception { if (m_Classifier == null) { throw new Exception("No base classifier has been set!"); } if (!data.classAttribute().isNominal()) { throw new UnsupportedClassTypeException("Class attribute must be nominal!"); } if (m_MatrixSource == MATRIX_ON_DEMAND) { String costName = data.relationName() + CostMatrix.FILE_EXTENSION; File costFile = new File(getOnDemandDirectory(), costName); if (!costFile.exists()) { throw new Exception("On-demand cost file doesn't exist: " + costFile); } setCostMatrix(new CostMatrix(new BufferedReader( new FileReader(costFile)))); } // Set up the bagger Bagging bagger = new Bagging(); bagger.setClassifier(getClassifier()); bagger.setSeed(getSeed()); bagger.setNumIterations(getNumIterations()); bagger.setBagSizePercent(getBagSizePercent()); bagger.buildClassifier(data); // Use the bagger to reassign class values according to minimum expected // cost Instances newData = new Instances(data); for (int i = 0; i < newData.numInstances(); i++) { Instance current = newData.instance(i); double [] pred = bagger.distributionForInstance(current); int minCostPred = Utils.minIndex(m_CostMatrix.expectedCosts(pred)); current.setClassValue(minCostPred); } // Build a classifier using the reassigned data m_Classifier.buildClassifier(newData); } /** * Classifies a given test instance. * * @param instance the instance to be classified * @exception Exception if instance could not be classified * successfully */ public double classifyInstance(Instance instance) throws Exception { return m_Classifier.classifyInstance(instance); } /** * Output a representation of this classifier */ public String toString() { if (m_Classifier == null) { return "MetaCost: No model built yet."; } String result = "MetaCost cost sensitive classifier induction"; result += "\nOptions: " + Utils.joinOptions(getOptions()); result += "\nBase learner: " + getClassifierSpec() + "\n\nClassifier Model\n" + m_Classifier.toString() + "\n\nCost Matrix\n" + m_CostMatrix.toString(); return result; } /** * Main method for testing this class. * * @param argv should contain the following arguments: * -t training file [-T test file] [-c class index] */ public static void main(String [] argv) { try { System.out.println(Evaluation .evaluateModel(new MetaCost(), argv)); } catch (Exception e) { System.err.println(e.getMessage()); } }}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -