⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 decorate.java

📁 wekaUT是 university texas austin 开发的基于weka的半指导学习(semi supervised learning)的分类器
💻 JAVA
📖 第 1 页 / 共 2 页
字号:
/* *    This program is free software; you can redistribute it and/or modify *    it under the terms of the GNU General Public License as published by *    the Free Software Foundation; either version 2 of the License, or *    (at your option) any later version. * *    This program is distributed in the hope that it will be useful, *    but WITHOUT ANY WARRANTY; without even the implied warranty of *    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the *    GNU General Public License for more details. * *    You should have received a copy of the GNU General Public License *    along with this program; if not, write to the Free Software *    Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. *//* *    Decorate.java *    Copyright (C) 2002 Prem Melville * */package weka.classifiers.meta;import weka.classifiers.*;import java.util.*;import weka.core.*;import weka.experiment.*;/** * DECORATE is a meta-learner for building diverse ensembles of * classifiers by using specially constructed artificial training * examples. Comprehensive experiments have demonstrated that this * technique is consistently more accurate than the base classifier,  * Bagging and Random Forests. Decorate also obtains higher accuracy than * Boosting on small training sets, and achieves comparable performance * on larger training sets.  For more * details see: <p> * * Prem Melville and Raymond J. Mooney. <i>Constructing diverse * classifier ensembles using artificial training examples.</i> * Proceedings of the Seventeeth International Joint Conference on * Artificial Intelligence 2003.<p> * * Prem Melville and Raymond J. Mooney. <i>Creating diversity in ensembles using artificial data.</i> * Journal of Information Fusion.<BR><BR> * * Valid options are:<p> * * -D <br> * Turn on debugging output.<p> * * -W classname <br> * Specify the full class name of a weak classifier as the basis for  * Decorate (default weka.classifiers.trees.j48.J48()).<p> * * -I num <br> * Specify the desired size of the committee (default 15). <p> * * -M iterations <br> * Set the maximum number of Decorate iterations (default 50). <p> * * -S seed <br> * Seed for random number generator. (default 0).<p> * * -R factor <br> * Factor that determines number of artificial examples to generate. <p> * * Options after -- are passed to the designated classifier.<p> * * @author Prem Melville (melville@cs.utexas.edu) * @version $Revision: 1.9 $ */public class Decorate extends EnsembleClassifier implements OptionHandler{    /** Set to true to get debugging output. */    protected boolean m_Debug = false;    /** The model base classifier to use. */    protected Classifier m_Classifier = new weka.classifiers.trees.j48.J48();          /** Vector of classifiers that make up the committee/ensemble. */    protected Vector m_Committee = null;        /** The desired ensemble size. */    protected int m_DesiredSize = 15;    /** The maximum number of Decorate iterations to run. */    protected int m_NumIterations = 50;        /** The seed for random number generation. */    protected int m_Seed = 0;        /** Amount of artificial/random instances to use - specified as a        fraction of the training data size. */    protected double m_ArtSize = 1.0 ;    /** The random number generator. */    protected Random m_Random = new Random(0);        /** Attribute statistics - used for generating artificial examples. */    protected Vector m_AttributeStats = null;        /**     * Returns an enumeration describing the available options     *     * @return an enumeration of all the available options     */    public Enumeration listOptions() {	Vector newVector = new Vector(8);	newVector.addElement(new Option(	      "\tTurn on debugging output.",	      "D", 0, "-D"));	newVector.addElement(new Option(              "\tDesired size of ensemble.\n"               + "\t(default 15)",              "I", 1, "-I"));	newVector.addElement(new Option(	      "\tMaximum number of Decorate iterations.\n"	      + "\t(default 50)",	      "M", 1, "-M"));	newVector.addElement(new Option(	      "\tFull name of base classifier.\n"	      + "\t(default weka.classifiers.trees.j48.J48)",	      "W", 1, "-W"));	newVector.addElement(new Option(              "\tSeed for random number generator.\n"	      +"\tIf set to -1, use a random seed.\n"              + "\t(default 0)",              "S", 1, "-S"));	newVector.addElement(new Option(				    "\tFactor that determines number of artificial examples to generate.\n"				    +"\tSpecified proportional to training set size.\n" 				    + "\t(default 1.0)",				    "R", 1, "-R"));    	if ((m_Classifier != null) &&	    (m_Classifier instanceof OptionHandler)) {	    newVector.addElement(new Option(					    "",					    "", 0, "\nOptions specific to classifier "					    + m_Classifier.getClass().getName() + ":"));	    Enumeration enum = ((OptionHandler)m_Classifier).listOptions();	    while (enum.hasMoreElements()) {		newVector.addElement(enum.nextElement());	    }	}		return newVector.elements();    }        /**     * Parses a given list of options. Valid options are:<p>     *        * -D <br>     * Turn on debugging output.<p>     *         * -W classname <br>     * Specify the full class name of a weak classifier as the basis for      * Decorate (required).<p>     *     * -I num <br>     * Specify the desired size of the committee (default 15). <p>     *     * -M iterations <br>     * Set the maximum number of Decorate iterations (default 50). <p>     *     * -S seed <br>     * Seed for random number generator. (default 0).<p>     *     * -R factor <br>     * Factor that determines number of artificial examples to generate. <p>     *     * Options after -- are passed to the designated classifier.<p>     *     * @param options the list of options as an array of strings     * @exception Exception if an option is not supported     */    public void setOptions(String[] options) throws Exception {	setDebug(Utils.getFlag('D', options));	String desiredSize = Utils.getOption('I', options);	if (desiredSize.length() != 0) {	    setDesiredSize(Integer.parseInt(desiredSize));	} else {	    setDesiredSize(15);	}	String maxIterations = Utils.getOption('M', options);	if (maxIterations.length() != 0) {	    setNumIterations(Integer.parseInt(maxIterations));	} else {	    setNumIterations(50);	}		String seed = Utils.getOption('S', options);	if (seed.length() != 0) {	    setSeed(Integer.parseInt(seed));	} else {	    setSeed(0);	}		String artSize = Utils.getOption('R', options);	if (artSize.length() != 0) {	    setArtificialSize(Double.parseDouble(artSize));	} else {	    setArtificialSize(1.0);	}		String classifierName = Utils.getOption('W', options);	if (classifierName.length() == 0) {	    throw new Exception("A classifier must be specified with"				+ " the -W option.");	}	setClassifier(Classifier.forName(classifierName,					 Utils.partitionOptions(options)));    }        /**     * Gets the current settings of the Classifier.     *     * @return an array of strings suitable for passing to setOptions     */    public String [] getOptions() {	String [] classifierOptions = new String [0];	if ((m_Classifier != null) && 	    (m_Classifier instanceof OptionHandler)) {	    classifierOptions = ((OptionHandler)m_Classifier).getOptions();	}	String [] options = new String [classifierOptions.length + 12];	int current = 0;	if (getDebug()) {	    options[current++] = "-D";	}	options[current++] = "-S"; options[current++] = "" + getSeed();	options[current++] = "-I"; options[current++] = "" + getDesiredSize();	options[current++] = "-M"; options[current++] = "" + getNumIterations();	options[current++] = "-R"; options[current++] = "" + getArtificialSize();		if (getClassifier() != null) {	    options[current++] = "-W";	    options[current++] = getClassifier().getClass().getName();	}	options[current++] = "--";	System.arraycopy(classifierOptions, 0, options, current, 			 classifierOptions.length);	current += classifierOptions.length;	while (current < options.length) {	    options[current++] = "";	}	return options;    }      /**   * Returns the tip text for this property   * @return tip text for this property suitable for   * displaying in the explorer/experimenter gui   */  public String desiredSizeTipText() {      return "the desired number of member classifiers in the Decorate ensemble. Decorate may terminate "	+"before this size is reached (depending on the value of numIterations). "	+"Larger ensemble sizes usually lead to more accurate models, but increases "	+"training time and model complexity.";  }      /**   * Returns the tip text for this property   * @return tip text for this property suitable for   * displaying in the explorer/experimenter gui   */  public String numIterationsTipText() {    return "the maximum number of Decorate iterations to run. Each iteration generates a classifier, "	+"but does not necessarily add it to the ensemble. Decorate stops when the desired ensemble "	+"size is reached. This parameter should be greater than "	+"equal to the desiredSize. If the desiredSize is not being reached it may help to "	+"increase this value.";  }      /**   * Returns the tip text for this property   * @return tip text for this property suitable for   * displaying in the explorer/experimenter gui   */  public String artificialSizeTipText() {    return "determines the number of artificial examples to use during training. Specified as "	+"a proportion of the training data. Higher values can increase ensemble diversity.";  }  /**   * Returns the tip text for this property   * @return tip text for this property suitable for   * displaying in the explorer/experimenter gui   */  public String seedTipText() {    return "seed for random number generator used for creating artificial data."	+" Set to -1 to use a random seed.";  }  /**   * Returns the tip text for this property   * @return tip text for this property suitable for   * displaying in the explorer/experimenter guib   */  public String classifierTipText() {    return "the desired base learner for the ensemble.";  }  /**   * Returns a string describing classifier   * @return a description suitable for   * displaying in the explorer/experimenter gui   */  public String globalInfo() {      return "DECORATE is a meta-learner for building diverse ensembles of "	  +"classifiers by using specially constructed artificial training "	  +"examples. Comprehensive experiments have demonstrated that this "	  +"technique is consistently more accurate than the base classifier, Bagging and Random Forests."	  +"Decorate also obtains higher accuracy than Boosting on small training sets, and achieves "	  +"comparable performance on larger training sets. "	  +"For more details see: P. Melville & R. J. Mooney. Constructing diverse classifier ensembles "	  +"using artificial training examples (IJCAI 2003).\n"	  +"P. Melville & R. J. Mooney. Creating diversity in ensembles using artificial data (submitted).";  }    /**     * Set debugging mode     *     * @param debug true if debug output should be printed     */    public void setDebug(boolean debug) {	m_Debug = debug;    }        /**     * Get whether debugging is turned on     *     * @return true if debugging output is on     */    public boolean getDebug() {	return m_Debug;    }        /**     * Set the base classifier for Decorate.     *     * @param newClassifier the Classifier to use.     */    public void setClassifier(Classifier newClassifier) {	m_Classifier = newClassifier;    }    /**     * Get the classifier used as the base classifier     *     * @return the classifier used as the classifier     */    public Classifier getClassifier() {	return m_Classifier;    }    /**     * Factor that determines number of artificial examples to generate.     *     * @return factor that determines number of artificial examples to generate     */    public double getArtificialSize() {	return m_ArtSize;    }      /**     * Sets factor that determines number of artificial examples to generate.     *     * @param newwArtSize factor that determines number of artificial examples to generate     */    public void setArtificialSize(double newArtSize) {	m_ArtSize = newArtSize;    }        /**     * Gets the desired size of the committee.     *     * @return the desired size of the committee     */    public int getDesiredSize() {	return m_DesiredSize;    }        /**     * Sets the desired size of the committee.     *     * @param newDesiredSize the desired size of the committee

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -