⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 multiclassclassifier.java

📁 wekaUT是 university texas austin 开发的基于weka的半指导学习(semi supervised learning)的分类器
💻 JAVA
📖 第 1 页 / 共 2 页
字号:
	  if (m_Method == METHOD_1_AGAINST_1) {    	    Instance tempInst = new Instance(inst); 	    tempInst.setDataset(m_TwoClassDataset);	    result[i] = ((DistributionClassifier)m_Classifiers[i])	      .distributionForInstance(tempInst)[1];  	  } else {	    m_ClassFilters[i].input(inst);	    m_ClassFilters[i].batchFinished();	    result[i] = ((DistributionClassifier)m_Classifiers[i])	      .distributionForInstance(m_ClassFilters[i].output())[1];	  }	}      }    }    return result;  }  /**   * Returns the distribution for an instance.   *   * @exception Exception if the distribution can't be computed successfully   */  public double[] distributionForInstance(Instance inst) throws Exception {        if (m_Classifiers.length == 1) {      return ((DistributionClassifier)m_Classifiers[0])        .distributionForInstance(inst);    }        double[] probs = new double[inst.numClasses()];    if (m_Method == METHOD_1_AGAINST_1) {          for(int i = 0; i < m_ClassFilters.length; i++) {	if (m_Classifiers[i] != null) {	  Instance tempInst = new Instance(inst); 	  tempInst.setDataset(m_TwoClassDataset);	  double [] current = ((DistributionClassifier)m_Classifiers[i])	    .distributionForInstance(tempInst);  	  Range range = new Range(((RemoveWithValues)m_ClassFilters[i])				  .getNominalIndices());	  range.setUpper(m_ClassAttribute.numValues());	  int[] pair = range.getSelection();	  if (current[0] > current[1]) probs[pair[0]] += 1.0;	  else if (current[1] > current[0]) probs[pair[1]] += 1.0;	}      }    } else {      // error correcting style methods      for(int i = 0; i < m_ClassFilters.length; i++) {	if (m_Classifiers[i] != null) {	  m_ClassFilters[i].input(inst);	  m_ClassFilters[i].batchFinished();	  double [] current = ((DistributionClassifier)m_Classifiers[i])	    .distributionForInstance(m_ClassFilters[i].output());	  for (int j = 0; j < m_ClassAttribute.numValues(); j++) {	    if (((MakeIndicator)m_ClassFilters[i]).getValueRange().isInRange(j)) {	      probs[j] += current[1];	    } else {	      probs[j] += current[0];	    }	  }	}      }    }        if (Utils.gr(Utils.sum(probs), 0)) {      Utils.normalize(probs);      return probs;    } else {      return m_ZeroR.distributionForInstance(inst);    }  }  /**   * Prints the classifiers.   */  public String toString() {    if (m_Classifiers == null) {      return "MultiClassClassifier: No model built yet.";    }    StringBuffer text = new StringBuffer();    text.append("MultiClassClassifier\n\n");    for (int i = 0; i < m_Classifiers.length; i++) {      text.append("Classifier ").append(i + 1);      if (m_Classifiers[i] != null) {        if ((m_ClassFilters != null) && (m_ClassFilters[i] != null)) {	  if (m_ClassFilters[i] instanceof RemoveWithValues) {	    Range range = new Range(((RemoveWithValues)m_ClassFilters[i])				    .getNominalIndices());	    range.setUpper(m_ClassAttribute.numValues());	    int[] pair = range.getSelection();	    text.append(", " + (pair[0]+1) + " vs " + (pair[1]+1));	  } else if (m_ClassFilters[i] instanceof MakeIndicator) {	    text.append(", using indicator values: ");	    text.append(((MakeIndicator)m_ClassFilters[i]).getValueRange());	  }        }        text.append('\n');        text.append(m_Classifiers[i].toString() + "\n\n");      } else {        text.append(" Skipped (no training examples)\n");      }    }    return text.toString();  }  /**   * Returns an enumeration describing the available options   *   * @return an enumeration of all the available options   */  public Enumeration listOptions()  {    Vector vec = new Vector(3);    Object c;        vec.addElement(new Option(       "\tSets the method to use. Valid values are 0 (1-against-all),\n"       +"\t1 (random codes), 2 (exhaustive code), and 3 (1-against-1). (default 0)\n",       "M", 1, "-M <num>"));    vec.addElement(new Option(       "\tSets the multiplier when using random codes. (default 2.0)",       "R", 1, "-R <num>"));    vec.addElement(new Option(       "\tSets the base classifier.",       "W", 1, "-W <base classifier>"));    vec.addElement(new Option(       "\tSets the random number seed for random codes.",       "Q", 1, "-Q <random number seed>"));    if (m_Classifier != null) {      try {	vec.addElement(new Option("",				  "", 0, "\nOptions specific to classifier "				  + m_Classifier.getClass().getName() + ":"));	Enumeration enum = ((OptionHandler)m_Classifier).listOptions();	while (enum.hasMoreElements()) {	  vec.addElement(enum.nextElement());	}      } catch (Exception e) {      }    }    return vec.elements();  }  /**   * Parses a given list of options. Valid options are:<p>   *   * -M num <br>   * Sets the method to use. Valid values are 0 (1-against-all),   * 1 (random codes), 2 (exhaustive code), and 3 (1-against-1). (default 0) <p>   *   * -R num <br>   * Sets the multiplier when using random codes. (default 2.0)<p>   *   * -W classname <br>   * Specify the full class name of a learner as the basis for    * the multiclassclassifier (required).<p>   *   * -Q seed <br>   * Random number seed (default 1).<p>   *   * @param options the list of options as an array of strings   * @exception Exception if an option is not supported   */  public void setOptions(String[] options) throws Exception {      String errorString = Utils.getOption('M', options);    if (errorString.length() != 0) {      setMethod(new SelectedTag(Integer.parseInt(errorString),                                              TAGS_METHOD));    } else {      setMethod(new SelectedTag(METHOD_1_AGAINST_ALL, TAGS_METHOD));    }    String rfactorString = Utils.getOption('R', options);    if (rfactorString.length() != 0) {      setRandomWidthFactor((new Double(rfactorString)).doubleValue());    } else {      setRandomWidthFactor(2.0);    }    String randomString = Utils.getOption('Q', options);    if (randomString.length() != 0) {      setSeed(Integer.parseInt(randomString));    } else {      setSeed(1);    }    String classifierName = Utils.getOption('W', options);    if (classifierName.length() == 0) {      throw new Exception("A classifier must be specified with"			  + " the -W option.");    }    setDistributionClassifier((DistributionClassifier)                              Classifier.forName(classifierName,                                                 Utils.partitionOptions(options)));  }  /**   * Gets the current settings of the Classifier.   *   * @return an array of strings suitable for passing to setOptions   */  public String [] getOptions() {        String [] classifierOptions = new String [0];    if ((m_Classifier != null) &&	(m_Classifier instanceof OptionHandler)) {      classifierOptions = ((OptionHandler)m_Classifier).getOptions();    }    String [] options = new String [classifierOptions.length + 9];    int current = 0;    options[current++] = "-M";    options[current++] = "" + m_Method;        options[current++] = "-R";    options[current++] = "" + m_RandomWidthFactor;    options[current++] = "-Q"; options[current++] = "" + getSeed();        if (getDistributionClassifier() != null) {      options[current++] = "-W";      options[current++] = getDistributionClassifier().getClass().getName();    }    options[current++] = "--";    System.arraycopy(classifierOptions, 0, options, current, 		     classifierOptions.length);    current += classifierOptions.length;    while (current < options.length) {      options[current++] = "";    }    return options;  }  /**   * @return a description of the classifier suitable for   * displaying in the explorer/experimenter gui   */  public String globalInfo() {    return "A metaclassifier for handling multi-class datasets with 2-class "      + "distribution classifiers. This classifier is also capable of "      + "applying error correcting output codes for increased accuracy.";  }  /**   * @return tip text for this property suitable for   * displaying in the explorer/experimenter gui   */  public String randomWidthFactorTipText() {    return "Sets the width multiplier when using random codes. The number "      + "of codes generated will be thus number multiplied by the number of "      + "classes.";  }  /**   * Gets the multiplier when generating random codes. Will generate   * numClasses * m_RandomWidthFactor codes.   *   * @return the width multiplier   */  public double getRandomWidthFactor() {    return m_RandomWidthFactor;  }    /**   * Sets the multiplier when generating random codes. Will generate   * numClasses * m_RandomWidthFactor codes.   *   * @param newRandomWidthFactor the new width multiplier   */  public void setRandomWidthFactor(double newRandomWidthFactor) {    m_RandomWidthFactor = newRandomWidthFactor;  }    /**   * @return tip text for this property suitable for   * displaying in the explorer/experimenter gui   */  public String methodTipText() {    return "Sets the method to use for transforming the multi-class problem into "      + "several 2-class ones.";   }  /**   * Gets the method used. Will be one of METHOD_1_AGAINST_ALL,   * METHOD_ERROR_RANDOM, METHOD_ERROR_EXHAUSTIVE, or METHOD_1_AGAINST_1.   *   * @return the current method.   */  public SelectedTag getMethod() {          return new SelectedTag(m_Method, TAGS_METHOD);  }  /**   * Sets the method used. Will be one of METHOD_1_AGAINST_ALL,   * METHOD_ERROR_RANDOM, METHOD_ERROR_EXHAUSTIVE, or METHOD_1_AGAINST_1.   *   * @param newMethod the new method.   */  public void setMethod(SelectedTag newMethod) {        if (newMethod.getTags() == TAGS_METHOD) {      m_Method = newMethod.getSelectedTag().getID();    }  }  /**   * @return tip text for this property suitable for   * displaying in the explorer/experimenter gui   */  public String distributionClassifierTipText() {    return "Sets the DistributionClassifier used as the basis for "      + "the multi-class classifier.";  }  /**   * Set the base classifier.    *   * @param newClassifier the Classifier to use.   */  public void setDistributionClassifier(DistributionClassifier newClassifier) {    m_Classifier = newClassifier;  }  /**   * Get the classifier used as the classifier   *   * @return the classifier used as the classifier   */  public DistributionClassifier getDistributionClassifier() {    return m_Classifier;  }  /**   * Sets the seed for random number generation.   *   * @param seed the random number seed   */  public void setSeed(int seed) {        m_Seed = seed;;  }  /**   * Gets the random number seed.   *    * @return the random number seed   */  public int getSeed() {    return m_Seed;  }  /**   * Main method for testing this class.   *   * @param argv the options   */  public static void main(String [] argv) {    DistributionClassifier scheme;    try {      scheme = new MultiClassClassifier();      System.out.println(Evaluation.evaluateModel(scheme, argv));    } catch (Exception e) {      System.err.println(e.getMessage());      e.printStackTrace();    }  }}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -