⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 multiclassclassifier.java

📁 wekaUT是 university texas austin 开发的基于weka的半指导学习(semi supervised learning)的分类器
💻 JAVA
📖 第 1 页 / 共 2 页
字号:
/* *    This program is free software; you can redistribute it and/or modify *    it under the terms of the GNU General Public License as published by *    the Free Software Foundation; either version 2 of the License, or *    (at your option) any later version. * *    This program is distributed in the hope that it will be useful, *    but WITHOUT ANY WARRANTY; without even the implied warranty of *    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the *    GNU General Public License for more details. * *    You should have received a copy of the GNU General Public License *    along with this program; if not, write to the Free Software *    Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. *//* *    MultiClassClassifier.java *    Copyright (C) 1999 Eibe Frank,Len Trigg * */package weka.classifiers.meta;import weka.classifiers.DistributionClassifier;import weka.classifiers.Classifier;import weka.classifiers.Evaluation;import weka.classifiers.rules.ZeroR;import java.io.Serializable;import java.util.Enumeration;import java.util.Random;import java.util.Vector;import weka.core.Attribute;import weka.core.AttributeStats;import weka.core.Instance;import weka.core.Instances;import weka.core.Option;import weka.core.OptionHandler;import weka.core.SelectedTag;import weka.core.Tag;import weka.core.Utils;import weka.core.FastVector;import weka.core.Range;import weka.filters.unsupervised.attribute.MakeIndicator;import weka.filters.unsupervised.instance.RemoveWithValues;import weka.filters.Filter;/** * Class for handling multi-class datasets with 2-class distribution * classifiers.<p> * * Valid options are:<p> * * -M num <br> * Sets the method to use. Valid values are 0 (1-against-all), * 1 (random codes), 2 (exhaustive code), and 3 (1-against-1). (default 0) <p> * * -R num <br> * Sets the multiplier when using random codes. (default 2.0)<p> * * -W classname <br> * Specify the full class name of a classifier as the basis for  * the multi-class classifier (required).<p> * * -Q seed <br> * Random number seed (default 1).<p> * * @author Eibe Frank (eibe@cs.waikato.ac.nz) * @author Len Trigg (len@reeltwo.com) * @author Richard Kirkby (rkirkby@cs.waikato.ac.nz) * @version $Revision: 1.1.1.1 $ */public class MultiClassClassifier extends DistributionClassifier   implements OptionHandler {  /** The classifiers. */  private Classifier [] m_Classifiers;  /** The filters used to transform the class. */  private Filter[] m_ClassFilters;  /** The class name of the base classifier. */  private DistributionClassifier m_Classifier = new weka.classifiers.rules.ZeroR();  /** ZeroR classifier for when all base classifier return zero probability. */  private ZeroR m_ZeroR;  /** Internal copy of the class attribute for output purposes */  private Attribute m_ClassAttribute;    /** A transformed dataset header used by the  1-against-1 method */  private Instances m_TwoClassDataset;  /** Random number seed */  protected int m_Seed = 1;  /**    * The multiplier when generating random codes. Will generate   * numClasses * m_RandomWidthFactor codes   */  private double m_RandomWidthFactor = 2.0;  /** The multiclass method to use */  private int m_Method = METHOD_1_AGAINST_ALL;  /** The error correction modes */  public static final int METHOD_1_AGAINST_ALL    = 0;  public static final int METHOD_ERROR_RANDOM     = 1;  public static final int METHOD_ERROR_EXHAUSTIVE = 2;  public static final int METHOD_1_AGAINST_1      = 3;  public static final Tag [] TAGS_METHOD = {    new Tag(METHOD_1_AGAINST_ALL, "1-against-all"),    new Tag(METHOD_ERROR_RANDOM, "Random correction code"),    new Tag(METHOD_ERROR_EXHAUSTIVE, "Exhaustive correction code"),    new Tag(METHOD_1_AGAINST_1, "1-against-1")  };  /** Interface for the code constructors */  private abstract class Code implements Serializable {    /**     * Subclasses must allocate and fill these.      * First dimension is number of codes.     * Second dimension is number of classes.     */    protected boolean [][]m_Codebits;    /** Returns the number of codes. */    public int size() {      return m_Codebits.length;    }    /**      * Returns the indices of the values set to true for this code,      * using 1-based indexing (for input to Range).     */    public String getIndices(int which) {      StringBuffer sb = new StringBuffer();      for (int i = 0; i < m_Codebits[which].length; i++) {        if (m_Codebits[which][i]) {          if (sb.length() != 0) {            sb.append(',');          }          sb.append(i + 1);        }      }      return sb.toString();    }    /** Returns a human-readable representation of the codes. */    public String toString() {      StringBuffer sb = new StringBuffer();      for(int i = 0; i < m_Codebits[0].length; i++) {        for (int j = 0; j < m_Codebits.length; j++) {          sb.append(m_Codebits[j][i] ? " 1" : " 0");        }        sb.append('\n');      }      return sb.toString();    }  }  /** Constructs a code with no error correction */  private class StandardCode extends Code {    public StandardCode(int numClasses) {      m_Codebits = new boolean[numClasses][numClasses];      for (int i = 0; i < numClasses; i++) {        m_Codebits[i][i] = true;      }      System.err.println("Code:\n" + this);    }  }  /** Constructs a random code assignment */  private class RandomCode extends Code {    Random r = new Random(m_Seed);    public RandomCode(int numClasses, int numCodes) {      numCodes = Math.max(numClasses, numCodes);      m_Codebits = new boolean[numCodes][numClasses];      int i = 0;      do {        randomize();        //System.err.println(this);      } while (!good() && (i++ < 100));      System.err.println("Code:\n" + this);    }    private boolean good() {      boolean [] ninClass = new boolean[m_Codebits[0].length];      boolean [] ainClass = new boolean[m_Codebits[0].length];      for (int i = 0; i < ainClass.length; i++) {	ainClass[i] = true;      }      for (int i = 0; i < m_Codebits.length; i++) {        boolean ninCode = false;        boolean ainCode = true;        for (int j = 0; j < m_Codebits[i].length; j++) {          boolean current = m_Codebits[i][j];          ninCode = ninCode || current;          ainCode = ainCode && current;          ninClass[j] = ninClass[j] || current;          ainClass[j] = ainClass[j] && current;        }        if (!ninCode || ainCode) {          return false;        }      }      for (int j = 0; j < ninClass.length; j++) {        if (!ninClass[j] || ainClass[j]) {          return false;        }      }      return true;    }    private void randomize() {      for (int i = 0; i < m_Codebits.length; i++) {        for (int j = 0; j < m_Codebits[i].length; j++) {	  double temp = r.nextDouble();          m_Codebits[i][j] = (temp < 0.5) ? false : true;        }      }    }  }  /**   * TODO: Constructs codes as per:   * Bose, R.C., Ray Chaudhuri (1960), On a class of error-correcting   * binary group codes, Information and Control, 3, 68-79.   * Hocquenghem, A. (1959) Codes corecteurs d'erreurs, Chiffres, 2, 147-156.    */  //private class BCHCode extends Code {...}  /** Constructs an exhaustive code assignment */  private class ExhaustiveCode extends Code {    public ExhaustiveCode(int numClasses) {      int width = (int)Math.pow(2, numClasses - 1) - 1;      m_Codebits = new boolean[width][numClasses];      for (int j = 0; j < width; j++) {        m_Codebits[j][0] = true;      }      for (int i = 1; i < numClasses; i++) {        int skip = (int) Math.pow(2, numClasses - (i + 1));        for(int j = 0; j < width; j++) {          m_Codebits[j][i] = ((j / skip) % 2 != 0);        }      }      System.err.println("Code:\n" + this);    }  }  /**   * Builds the classifiers.   *   * @param insts the training data.   * @exception Exception if a classifier can't be built   */  public void buildClassifier(Instances insts) throws Exception {    Instances newInsts;    if (m_Classifier == null) {      throw new Exception("No base classifier has been set!");    }    m_ZeroR = new ZeroR();    m_ZeroR.buildClassifier(insts);    m_TwoClassDataset = null;    int numClassifiers = insts.numClasses();    if (numClassifiers <= 2) {      m_Classifiers = Classifier.makeCopies(m_Classifier, 1);      m_Classifiers[0].buildClassifier(insts);      m_ClassFilters = null;    } else if (m_Method == METHOD_1_AGAINST_1) {       // generate fastvector of pairs      FastVector pairs = new FastVector();      for (int i=0; i<insts.numClasses(); i++) {	for (int j=0; j<insts.numClasses(); j++) {	  if (j<=i) continue;	  int[] pair = new int[2];	  pair[0] = i; pair[1] = j;	  pairs.addElement(pair);	}      }      numClassifiers = pairs.size();      m_Classifiers = Classifier.makeCopies(m_Classifier, numClassifiers);      m_ClassFilters = new Filter[numClassifiers];      // generate the classifiers      for (int i=0; i<numClassifiers; i++) {	RemoveWithValues classFilter = new RemoveWithValues();	classFilter.setAttributeIndex(insts.classIndex());	classFilter.setModifyHeader(true);	classFilter.setInvertSelection(false);	classFilter.setNominalIndicesArr((int[])pairs.elementAt(i));	int[] pair = (int[])pairs.elementAt(i);	Instances tempInstances = new Instances(insts, 0);	tempInstances.setClassIndex(-1);	classFilter.setInputFormat(tempInstances);	newInsts = Filter.useFilter(insts, classFilter);	newInsts.setClassIndex(insts.classIndex());	m_Classifiers[i].buildClassifier(newInsts);	m_ClassFilters[i] = classFilter;      }      // construct a two-class header version of the dataset      m_TwoClassDataset = new Instances(insts, 0);      int classIndex = m_TwoClassDataset.classIndex();      m_TwoClassDataset.setClassIndex(-1);      m_TwoClassDataset.deleteAttributeAt(classIndex);      FastVector classLabels = new FastVector();      classLabels.addElement("class0");      classLabels.addElement("class1");      m_TwoClassDataset.insertAttributeAt(new Attribute("class", classLabels),					  classIndex);      m_TwoClassDataset.setClassIndex(classIndex);    } else { // use error correcting code style methods      Code code = null;      switch (m_Method) {      case METHOD_ERROR_EXHAUSTIVE:        code = new ExhaustiveCode(numClassifiers);        break;      case METHOD_ERROR_RANDOM:        code = new RandomCode(numClassifiers,                               (int)(numClassifiers * m_RandomWidthFactor));        break;      case METHOD_1_AGAINST_ALL:        code = new StandardCode(numClassifiers);        break;      default:        throw new Exception("Unrecognized correction code type");      }      numClassifiers = code.size();      m_Classifiers = Classifier.makeCopies(m_Classifier, numClassifiers);      m_ClassFilters = new MakeIndicator[numClassifiers];      AttributeStats classStats = insts.attributeStats(insts.classIndex());      for (int i = 0; i < m_Classifiers.length; i++) {        if ((m_Method == METHOD_1_AGAINST_ALL) &&             (classStats.nominalCounts[i] == 0)) {          m_Classifiers[i] = null;        } else {          m_ClassFilters[i] = new MakeIndicator();	  MakeIndicator classFilter = (MakeIndicator) m_ClassFilters[i];          classFilter.setAttributeIndex(insts.classIndex());          classFilter.setValueIndices(code.getIndices(i));          classFilter.setNumeric(false);          classFilter.setInputFormat(insts);          newInsts = Filter.useFilter(insts, m_ClassFilters[i]);          m_Classifiers[i].buildClassifier(newInsts);        }      }    }    m_ClassAttribute = insts.classAttribute();  }  /**   * Returns the individual predictions of the base classifiers   * for an instance. Used by StackedMultiClassClassifier.   * Returns the probability for the second "class" predicted   * by each base classifier.   *   * @exception Exception if the predictions can't be computed successfully   */  public double[] individualPredictions(Instance inst) throws Exception {        double[] result = null;    if (m_Classifiers.length == 1) {      result = new double[1];      result[0] = ((DistributionClassifier)m_Classifiers[0])        .distributionForInstance(inst)[1];    } else {      result = new double[m_ClassFilters.length];      for(int i = 0; i < m_ClassFilters.length; i++) {	if (m_Classifiers[i] != null) {

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -