📄 multiclassclassifier.java
字号:
/* * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. *//* * MultiClassClassifier.java * Copyright (C) 1999 Eibe Frank,Len Trigg * */package weka.classifiers.meta;import weka.classifiers.DistributionClassifier;import weka.classifiers.Classifier;import weka.classifiers.Evaluation;import weka.classifiers.rules.ZeroR;import java.io.Serializable;import java.util.Enumeration;import java.util.Random;import java.util.Vector;import weka.core.Attribute;import weka.core.AttributeStats;import weka.core.Instance;import weka.core.Instances;import weka.core.Option;import weka.core.OptionHandler;import weka.core.SelectedTag;import weka.core.Tag;import weka.core.Utils;import weka.core.FastVector;import weka.core.Range;import weka.filters.unsupervised.attribute.MakeIndicator;import weka.filters.unsupervised.instance.RemoveWithValues;import weka.filters.Filter;/** * Class for handling multi-class datasets with 2-class distribution * classifiers.<p> * * Valid options are:<p> * * -M num <br> * Sets the method to use. Valid values are 0 (1-against-all), * 1 (random codes), 2 (exhaustive code), and 3 (1-against-1). (default 0) <p> * * -R num <br> * Sets the multiplier when using random codes. (default 2.0)<p> * * -W classname <br> * Specify the full class name of a classifier as the basis for * the multi-class classifier (required).<p> * * -Q seed <br> * Random number seed (default 1).<p> * * @author Eibe Frank (eibe@cs.waikato.ac.nz) * @author Len Trigg (len@reeltwo.com) * @author Richard Kirkby (rkirkby@cs.waikato.ac.nz) * @version $Revision: 1.1.1.1 $ */public class MultiClassClassifier extends DistributionClassifier implements OptionHandler { /** The classifiers. */ private Classifier [] m_Classifiers; /** The filters used to transform the class. */ private Filter[] m_ClassFilters; /** The class name of the base classifier. */ private DistributionClassifier m_Classifier = new weka.classifiers.rules.ZeroR(); /** ZeroR classifier for when all base classifier return zero probability. */ private ZeroR m_ZeroR; /** Internal copy of the class attribute for output purposes */ private Attribute m_ClassAttribute; /** A transformed dataset header used by the 1-against-1 method */ private Instances m_TwoClassDataset; /** Random number seed */ protected int m_Seed = 1; /** * The multiplier when generating random codes. Will generate * numClasses * m_RandomWidthFactor codes */ private double m_RandomWidthFactor = 2.0; /** The multiclass method to use */ private int m_Method = METHOD_1_AGAINST_ALL; /** The error correction modes */ public static final int METHOD_1_AGAINST_ALL = 0; public static final int METHOD_ERROR_RANDOM = 1; public static final int METHOD_ERROR_EXHAUSTIVE = 2; public static final int METHOD_1_AGAINST_1 = 3; public static final Tag [] TAGS_METHOD = { new Tag(METHOD_1_AGAINST_ALL, "1-against-all"), new Tag(METHOD_ERROR_RANDOM, "Random correction code"), new Tag(METHOD_ERROR_EXHAUSTIVE, "Exhaustive correction code"), new Tag(METHOD_1_AGAINST_1, "1-against-1") }; /** Interface for the code constructors */ private abstract class Code implements Serializable { /** * Subclasses must allocate and fill these. * First dimension is number of codes. * Second dimension is number of classes. */ protected boolean [][]m_Codebits; /** Returns the number of codes. */ public int size() { return m_Codebits.length; } /** * Returns the indices of the values set to true for this code, * using 1-based indexing (for input to Range). */ public String getIndices(int which) { StringBuffer sb = new StringBuffer(); for (int i = 0; i < m_Codebits[which].length; i++) { if (m_Codebits[which][i]) { if (sb.length() != 0) { sb.append(','); } sb.append(i + 1); } } return sb.toString(); } /** Returns a human-readable representation of the codes. */ public String toString() { StringBuffer sb = new StringBuffer(); for(int i = 0; i < m_Codebits[0].length; i++) { for (int j = 0; j < m_Codebits.length; j++) { sb.append(m_Codebits[j][i] ? " 1" : " 0"); } sb.append('\n'); } return sb.toString(); } } /** Constructs a code with no error correction */ private class StandardCode extends Code { public StandardCode(int numClasses) { m_Codebits = new boolean[numClasses][numClasses]; for (int i = 0; i < numClasses; i++) { m_Codebits[i][i] = true; } System.err.println("Code:\n" + this); } } /** Constructs a random code assignment */ private class RandomCode extends Code { Random r = new Random(m_Seed); public RandomCode(int numClasses, int numCodes) { numCodes = Math.max(numClasses, numCodes); m_Codebits = new boolean[numCodes][numClasses]; int i = 0; do { randomize(); //System.err.println(this); } while (!good() && (i++ < 100)); System.err.println("Code:\n" + this); } private boolean good() { boolean [] ninClass = new boolean[m_Codebits[0].length]; boolean [] ainClass = new boolean[m_Codebits[0].length]; for (int i = 0; i < ainClass.length; i++) { ainClass[i] = true; } for (int i = 0; i < m_Codebits.length; i++) { boolean ninCode = false; boolean ainCode = true; for (int j = 0; j < m_Codebits[i].length; j++) { boolean current = m_Codebits[i][j]; ninCode = ninCode || current; ainCode = ainCode && current; ninClass[j] = ninClass[j] || current; ainClass[j] = ainClass[j] && current; } if (!ninCode || ainCode) { return false; } } for (int j = 0; j < ninClass.length; j++) { if (!ninClass[j] || ainClass[j]) { return false; } } return true; } private void randomize() { for (int i = 0; i < m_Codebits.length; i++) { for (int j = 0; j < m_Codebits[i].length; j++) { double temp = r.nextDouble(); m_Codebits[i][j] = (temp < 0.5) ? false : true; } } } } /** * TODO: Constructs codes as per: * Bose, R.C., Ray Chaudhuri (1960), On a class of error-correcting * binary group codes, Information and Control, 3, 68-79. * Hocquenghem, A. (1959) Codes corecteurs d'erreurs, Chiffres, 2, 147-156. */ //private class BCHCode extends Code {...} /** Constructs an exhaustive code assignment */ private class ExhaustiveCode extends Code { public ExhaustiveCode(int numClasses) { int width = (int)Math.pow(2, numClasses - 1) - 1; m_Codebits = new boolean[width][numClasses]; for (int j = 0; j < width; j++) { m_Codebits[j][0] = true; } for (int i = 1; i < numClasses; i++) { int skip = (int) Math.pow(2, numClasses - (i + 1)); for(int j = 0; j < width; j++) { m_Codebits[j][i] = ((j / skip) % 2 != 0); } } System.err.println("Code:\n" + this); } } /** * Builds the classifiers. * * @param insts the training data. * @exception Exception if a classifier can't be built */ public void buildClassifier(Instances insts) throws Exception { Instances newInsts; if (m_Classifier == null) { throw new Exception("No base classifier has been set!"); } m_ZeroR = new ZeroR(); m_ZeroR.buildClassifier(insts); m_TwoClassDataset = null; int numClassifiers = insts.numClasses(); if (numClassifiers <= 2) { m_Classifiers = Classifier.makeCopies(m_Classifier, 1); m_Classifiers[0].buildClassifier(insts); m_ClassFilters = null; } else if (m_Method == METHOD_1_AGAINST_1) { // generate fastvector of pairs FastVector pairs = new FastVector(); for (int i=0; i<insts.numClasses(); i++) { for (int j=0; j<insts.numClasses(); j++) { if (j<=i) continue; int[] pair = new int[2]; pair[0] = i; pair[1] = j; pairs.addElement(pair); } } numClassifiers = pairs.size(); m_Classifiers = Classifier.makeCopies(m_Classifier, numClassifiers); m_ClassFilters = new Filter[numClassifiers]; // generate the classifiers for (int i=0; i<numClassifiers; i++) { RemoveWithValues classFilter = new RemoveWithValues(); classFilter.setAttributeIndex(insts.classIndex()); classFilter.setModifyHeader(true); classFilter.setInvertSelection(false); classFilter.setNominalIndicesArr((int[])pairs.elementAt(i)); int[] pair = (int[])pairs.elementAt(i); Instances tempInstances = new Instances(insts, 0); tempInstances.setClassIndex(-1); classFilter.setInputFormat(tempInstances); newInsts = Filter.useFilter(insts, classFilter); newInsts.setClassIndex(insts.classIndex()); m_Classifiers[i].buildClassifier(newInsts); m_ClassFilters[i] = classFilter; } // construct a two-class header version of the dataset m_TwoClassDataset = new Instances(insts, 0); int classIndex = m_TwoClassDataset.classIndex(); m_TwoClassDataset.setClassIndex(-1); m_TwoClassDataset.deleteAttributeAt(classIndex); FastVector classLabels = new FastVector(); classLabels.addElement("class0"); classLabels.addElement("class1"); m_TwoClassDataset.insertAttributeAt(new Attribute("class", classLabels), classIndex); m_TwoClassDataset.setClassIndex(classIndex); } else { // use error correcting code style methods Code code = null; switch (m_Method) { case METHOD_ERROR_EXHAUSTIVE: code = new ExhaustiveCode(numClassifiers); break; case METHOD_ERROR_RANDOM: code = new RandomCode(numClassifiers, (int)(numClassifiers * m_RandomWidthFactor)); break; case METHOD_1_AGAINST_ALL: code = new StandardCode(numClassifiers); break; default: throw new Exception("Unrecognized correction code type"); } numClassifiers = code.size(); m_Classifiers = Classifier.makeCopies(m_Classifier, numClassifiers); m_ClassFilters = new MakeIndicator[numClassifiers]; AttributeStats classStats = insts.attributeStats(insts.classIndex()); for (int i = 0; i < m_Classifiers.length; i++) { if ((m_Method == METHOD_1_AGAINST_ALL) && (classStats.nominalCounts[i] == 0)) { m_Classifiers[i] = null; } else { m_ClassFilters[i] = new MakeIndicator(); MakeIndicator classFilter = (MakeIndicator) m_ClassFilters[i]; classFilter.setAttributeIndex(insts.classIndex()); classFilter.setValueIndices(code.getIndices(i)); classFilter.setNumeric(false); classFilter.setInputFormat(insts); newInsts = Filter.useFilter(insts, m_ClassFilters[i]); m_Classifiers[i].buildClassifier(newInsts); } } } m_ClassAttribute = insts.classAttribute(); } /** * Returns the individual predictions of the base classifiers * for an instance. Used by StackedMultiClassClassifier. * Returns the probability for the second "class" predicted * by each base classifier. * * @exception Exception if the predictions can't be computed successfully */ public double[] individualPredictions(Instance inst) throws Exception { double[] result = null; if (m_Classifiers.length == 1) { result = new double[1]; result[0] = ((DistributionClassifier)m_Classifiers[0]) .distributionForInstance(inst)[1]; } else { result = new double[m_ClassFilters.length]; for(int i = 0; i < m_ClassFilters.length; i++) { if (m_Classifiers[i] != null) {
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -