⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 ordinalclassclassifier.java

📁 wekaUT是 university texas austin 开发的基于weka的半指导学习(semi supervised learning)的分类器
💻 JAVA
字号:
/* *    This program is free software; you can redistribute it and/or modify *    it under the terms of the GNU General Public License as published by *    the Free Software Foundation; either version 2 of the License, or *    (at your option) any later version. * *    This program is distributed in the hope that it will be useful, *    but WITHOUT ANY WARRANTY; without even the implied warranty of *    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the *    GNU General Public License for more details. * *    You should have received a copy of the GNU General Public License *    along with this program; if not, write to the Free Software *    Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. *//* *    OrdinalClassClassifier.java *    Copyright (C) 2001 Mark Hall * */package weka.classifiers.meta;import weka.classifiers.Evaluation;import weka.classifiers.Classifier;import weka.classifiers.DistributionClassifier;import weka.classifiers.rules.ZeroR;import java.io.Serializable;import weka.core.*;import weka.filters.unsupervised.attribute.MakeIndicator;import weka.filters.Filter;import java.util.BitSet;import java.util.Enumeration;import java.util.Vector;/** * Meta classifier for transforming an ordinal class problem to a series * of binary class problems. For more information see: <p> * * Frank, E. and Hall, M. (in press). <i>A simple approach to ordinal  * prediction.</i> 12th European Conference on Machine Learning.  * Freiburg, Germany. <p> * * Valid options are: <p> * * -W classname <br> * Specify the full class name of a learner as the basis for  * the ordinalclassclassifier (required).<p> * * @author <a href="mailto:mhall@cs.waikato.ac.nz">Mark Hall</a> * @version $Revision 1.0 $ * @see DistributionClassifier * @see OptionHandler */public class OrdinalClassClassifier extends DistributionClassifier implements OptionHandler {  /** The classifiers. (One for each class.) */  private Classifier [] m_Classifiers;  /** The filters used to transform the class. */  private MakeIndicator[] m_ClassFilters;  /** The class name of the base classifier. */  private DistributionClassifier m_Classifier = new weka.classifiers.rules.ZeroR();  /** Internal copy of the class attribute for output purposes */  private Attribute m_ClassAttribute;  /** ZeroR classifier for when all base classifier return zero probability. */  private ZeroR m_ZeroR;  /**   * Returns a string describing this attribute evaluator   * @return a description of the evaluator suitable for   * displaying in the explorer/experimenter gui   */  public String globalInfo() {    return " Meta classifier that allows standard classification algorithms "      +"to be applied to ordinal class problems.  For more information see: "      +"Frank, E. and Hall, M. (in press). A simple approach to ordinal "      +"prediction. 12th European Conference on Machine Learning. Freiburg, "      +"Germany.";  }  /**   * Builds the classifiers.   *   * @param insts the training data.   * @exception Exception if a classifier can't be built   */  public void buildClassifier(Instances insts) throws Exception {    Instances newInsts;        if (m_Classifier == null) {      throw new Exception("No base classifier has been set!");    }    m_ZeroR = new ZeroR();    m_ZeroR.buildClassifier(insts);    int numClassifiers = insts.numClasses() - 1;    numClassifiers = (numClassifiers == 0) ? 1 : numClassifiers;    if (numClassifiers == 1) {      m_Classifiers = Classifier.makeCopies(m_Classifier, 1);      m_Classifiers[0].buildClassifier(insts);    } else {      m_Classifiers = Classifier.makeCopies(m_Classifier, numClassifiers);      m_ClassFilters = new MakeIndicator[numClassifiers];      for (int i = 0; i < m_Classifiers.length; i++) {	m_ClassFilters[i] = new MakeIndicator();	m_ClassFilters[i].setAttributeIndex(insts.classIndex());	m_ClassFilters[i].setValueIndices(""+(i+2)+"-last");	m_ClassFilters[i].setNumeric(false);	m_ClassFilters[i].setInputFormat(insts);	newInsts = Filter.useFilter(insts, m_ClassFilters[i]);	m_Classifiers[i].buildClassifier(newInsts);      }    }    m_ClassAttribute = insts.classAttribute();  }    /**   * Returns the distribution for an instance.   *   * @exception Exception if the distribution can't be computed successfully   */  public double [] distributionForInstance(Instance inst) throws Exception {        if (m_Classifiers.length == 1) {      return ((DistributionClassifier)m_Classifiers[0])        .distributionForInstance(inst);    }    double [] probs = new double[inst.numClasses()];        double [][] distributions = new double[m_ClassFilters.length][0];    for(int i = 0; i < m_ClassFilters.length; i++) {      m_ClassFilters[i].input(inst);      m_ClassFilters[i].batchFinished();            distributions[i] = ((DistributionClassifier)m_Classifiers[i])	.distributionForInstance(m_ClassFilters[i].output());          }    for (int i = 0; i < inst.numClasses(); i++) {      if (i == 0) {	probs[i] = distributions[0][0];      } else if (i == inst.numClasses() - 1) {	probs[i] = distributions[i - 1][1];      } else {	probs[i] = distributions[i - 1][1] - distributions[i][1];	if (!(probs[i] > 0)) {	  System.err.println("Warning: estimated probability " + probs[i] +			     ". Rounding to 0.");	  probs[i] = 0;	}      }    }    if (Utils.gr(Utils.sum(probs), 0)) {      Utils.normalize(probs);      return probs;    } else {      return m_ZeroR.distributionForInstance(inst);    }  }  /**   * Returns an enumeration describing the available options.   *   * @return an enumeration of all the available options.   */  public Enumeration listOptions()  {    Vector vec = new Vector(1);    Object c;        vec.addElement(new Option(       "\tSets the base classifier.",       "W", 1, "-W <base classifier>"));        if (m_Classifier != null) {      try {	vec.addElement(new Option("",				  "", 0, "\nOptions specific to classifier "				  + m_Classifier.getClass().getName() + ":"));	Enumeration enum = ((OptionHandler)m_Classifier).listOptions();	while (enum.hasMoreElements()) {	  vec.addElement(enum.nextElement());	}      } catch (Exception e) {      }    }    return vec.elements();  }  /**   * Parses a given list of options. Valid options are:<p>   *   * -W classname <br>   * Specify the full class name of a learner as the basis for    * the ordinalclassclassifier (required).<p>   *   * @param options the list of options as an array of strings   * @exception Exception if an option is not supported   */  public void setOptions(String[] options) throws Exception {      String classifierName = Utils.getOption('W', options);    if (classifierName.length() == 0) {      throw new Exception("A classifier must be specified with"			  + " the -W option.");    }    setDistributionClassifier((DistributionClassifier)                              Classifier.forName(classifierName,                                                 Utils.partitionOptions(options)));  }  /**   * Gets the current settings of the Classifier.   *   * @return an array of strings suitable for passing to setOptions   */  public String [] getOptions() {        String [] classifierOptions = new String [0];    if ((m_Classifier != null) &&	(m_Classifier instanceof OptionHandler)) {      classifierOptions = ((OptionHandler)m_Classifier).getOptions();    }    String [] options = new String [classifierOptions.length + 3];    int current = 0;    if (getDistributionClassifier() != null) {      options[current++] = "-W";      options[current++] = getDistributionClassifier().getClass().getName();    }    options[current++] = "--";    System.arraycopy(classifierOptions, 0, options, current, 		     classifierOptions.length);    current += classifierOptions.length;    while (current < options.length) {      options[current++] = "";    }    return options;  }    /**   * @return tip text for this property suitable for   * displaying in the explorer/experimenter gui   */  public String distributionClassifierTipText() {    return "Sets the DistributionClassifier used as the basis for "      + "the multi-class classifier.";  }  /**   * Set the base classifier.    *   * @param newClassifier the Classifier to use.   */  public void setDistributionClassifier(DistributionClassifier newClassifier) {    m_Classifier = newClassifier;  }  /**   * Get the classifier used as the classifier   *   * @return the classifier used as the classifier   */  public DistributionClassifier getDistributionClassifier() {    return m_Classifier;  }  /**   * Prints the classifiers.   */  public String toString() {        if (m_Classifiers == null) {      return "OrdinalClassClassifier: No model built yet.";    }    StringBuffer text = new StringBuffer();    text.append("OrdinalClassClassifier\n\n");    for (int i = 0; i < m_Classifiers.length; i++) {      text.append("Classifier ").append(i + 1);      if (m_Classifiers[i] != null) {	 if ((m_ClassFilters != null) && (m_ClassFilters[i] != null)) {          text.append(", using indicator values: ");          text.append(m_ClassFilters[i].getValueRange());        }        text.append('\n');        text.append(m_Classifiers[i].toString() + "\n");      } else {        text.append(" Skipped (no training examples)\n");      }    }    return text.toString();  }  /**   * Main method for testing this class.   *   * @param argv the options   */  public static void main(String [] argv) {    DistributionClassifier scheme;    try {      scheme = new OrdinalClassClassifier();      System.out.println(Evaluation.evaluateModel(scheme, argv));    } catch (Exception e) {      e.printStackTrace();      System.err.println(e.getMessage());    }  }}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -