📄 fable.java
字号:
* Get the classifier used as the base classifier * * @return the classifier used as the classifier */ public Classifier getClassifier() { return m_Classifier; } /** * Factor that determines number of artificial examples to generate. * * @return factor that determines number of artificial examples to generate */ public double getArtificialSize() { return m_ArtSize; } /** * Sets factor that determines number of artificial examples to generate. * * @param newwArtSize factor that determines number of artificial examples to generate */ public void setArtificialSize(double newArtSize) { m_ArtSize = newArtSize; } /** * Gets the desired size of the committee. * * @return the desired size of the committee */ public int getDesiredSize() { return m_DesiredSize; } /** * Sets the desired size of the committee. * * @param newDesiredSize the desired size of the committee */ public void setDesiredSize(int newDesiredSize) { m_DesiredSize = newDesiredSize; } /** * Sets the max number of Decorate iterations to run. * * @param numIterations max number of Decorate iterations to run */ public void setNumIterations(int numIterations) { m_NumIterations = numIterations; } /** * Gets the max number of Decorate iterations to run. * * @return the max number of Decorate iterations to run */ public int getNumIterations() { return m_NumIterations; } /** * Set the seed for random number generator. * * @param seed the random number seed */ public void setSeed(int seed) { m_Seed = seed; if(m_Seed==-1){ m_Random = new Random(); }else{ m_Random = new Random(m_Seed); } } /** * Gets the seed for the random number generator. * * @return the seed for the random number generator */ public int getSeed() { return m_Seed; } /** * Build Decorate classifier * * @param data the training data to be used for generating the classifier * @exception Exception if the classifier could not be built successfully */ public void buildClassifier(Instances data) throws Exception { if(m_Classifier == null) { throw new Exception("A base classifier has not been specified!"); } if(data.checkForStringAttributes()) { throw new UnsupportedAttributeTypeException("Cannot handle string attributes!"); } if(data.classAttribute().isNumeric()) { throw new UnsupportedClassTypeException("Decorate can't handle a numeric class!"); } if(m_NumIterations < m_DesiredSize) throw new Exception("Max number of iterations must be >= desired ensemble size!"); trainSelectionCommittee(data); int i = 1;//current committee size int numTrials = 1;//number of Decorate iterations Instances divData = new Instances(data);//local copy of data - diversity data Instances artData = null;//artificial data //compute number of artficial instances to add at each iteration int artSize = (int) (Math.abs(m_ArtSize)*data.numInstances()); if(artSize==0) artSize=1;//atleast add one random example computeStats(data);//Compute training data stats for creating artificial examples //initialize new committee m_Committee = new Vector(); Classifier newClassifier = m_Classifier; newClassifier.buildClassifier(divData); m_Committee.add(newClassifier); double eComm = computeError(divData);//compute ensemble error //if(m_Debug) System.out.println("Initialize:\tClassifier "+i+" added to ensemble. Ensemble error = "+eComm); //repeat till desired committee size is reached OR the max number of iterations is exceeded while(i<m_DesiredSize && numTrials<m_NumIterations){ //Generate artificial training examples artData = generateArtificialData(artSize, data); //Label artificial examples labelData(artData); //Remove all the artificial data from the previous step (if any) if(divData.numInstances() > data.numInstances()) { removeInstances(divData, artSize); } addInstances(divData, artData);//Add new artificial data //Build new classifier Classifier tmp[] = Classifier.makeCopies(m_Classifier,1); newClassifier = tmp[0]; newClassifier.buildClassifier(divData); //Test if the new classifier should be added to the ensemble m_Committee.add(newClassifier);//add new classifier to current committee double currError = computeError(data); if(currError <= eComm){//adding the new member did not increase the error i++; eComm = currError; //if(m_Debug) System.out.println("Iteration: "+(1+numTrials)+"\tClassifier "+i+" added to ensemble. Ensemble error = "+eComm); }else{//reject the current classifier because it increased the ensemble error m_Committee.removeElementAt(m_Committee.size()-1);//pop the last member } numTrials++; } } //Train alternate ensemble method for use in selection protected void trainSelectionCommittee(Instances data) throws Exception{ if(m_SelectionScheme==BAGGING){ if(m_SelectionCommittee==null){//initialize Bagging System.out.println("Initializing Bagging..."); m_SelectionCommittee = new Bagging(); ((Bagging)m_SelectionCommittee).setClassifier(getClassifier()); ((Bagging)m_SelectionCommittee).setSeed(getSeed()); ((Bagging)m_SelectionCommittee).setNumIterations(getDesiredSize()); ((Bagging)m_SelectionCommittee).setBagSizePercent(100); } m_SelectionCommittee.buildClassifier(data); }else if(m_SelectionScheme==BOOSTING){ if(m_SelectionCommittee==null){//initialize Boosting System.out.println("Initializing AdaBoost..."); m_SelectionCommittee = new AdaBoostM1(); ((AdaBoostM1)m_SelectionCommittee).setClassifier(getClassifier()); ((AdaBoostM1)m_SelectionCommittee).setSeed(getSeed()); ((AdaBoostM1)m_SelectionCommittee).setMaxIterations(getDesiredSize()); } m_SelectionCommittee.buildClassifier(data); } } /** * Compute and store statistics required for generating artificial data. * * @param data training instances * @exception Exception if statistics could not be calculated successfully */ protected void computeStats(Instances data) throws Exception{ int numAttributes = data.numAttributes(); m_AttributeStats = new Vector(numAttributes);//use to map attributes to their stats for(int j=0; j<numAttributes; j++){ if(data.attribute(j).isNominal()){ //Compute the probability of occurence of each distinct value int []nomCounts = (data.attributeStats(j)).nominalCounts; double []counts = new double[nomCounts.length]; if(counts.length < 2) throw new Exception("Nominal attribute has less than two distinct values!"); //Perform Laplace smoothing for(int i=0; i<counts.length; i++) counts[i] = nomCounts[i] + 1; Utils.normalize(counts); double []stats = new double[counts.length - 1]; stats[0] = counts[0]; //Calculate cumulative probabilities for(int i=1; i<stats.length; i++) stats[i] = stats[i-1] + counts[i]; m_AttributeStats.add(j,stats); }else if(data.attribute(j).isNumeric()){ //Get mean and standard deviation from the training data double []stats = new double[2]; stats[0] = data.meanOrMode(j); stats[1] = Math.sqrt(data.variance(j)); m_AttributeStats.add(j,stats); }else System.err.println("Decorate can only handle numeric and nominal values."); } } /** * Generate artificial training examples. * @param artSize size of examples set to create * @param data training data * @return the set of unlabeled artificial examples */ protected Instances generateArtificialData(int artSize, Instances data){ int numAttributes = data.numAttributes(); Instances artData = new Instances(data, artSize); double []att; Instance artInstance; for(int i=0; i<artSize; i++){ att = new double[numAttributes]; for(int j=0; j<numAttributes; j++){ if(data.attribute(j).isNominal()){ //Select nominal value based on the frequency of occurence in the training data double []stats = (double [])m_AttributeStats.get(j); att[j] = (double) selectIndexProbabilistically(stats); } else if(data.attribute(j).isNumeric()){ //Generate numeric value from the Guassian distribution //defined by the mean and std dev of the attribute double []stats = (double [])m_AttributeStats.get(j); att[j] = (m_Random.nextGaussian()*stats[1])+stats[0]; }else System.err.println("Decorate can only handle numeric and nominal values."); } artInstance = new Instance(1.0, att); artData.add(artInstance); } return artData; } /** * Labels the artificially generated data. * * @param artData the artificially generated instances * @exception Exception if instances cannot be labeled successfully */ protected void labelData(Instances artData) throws Exception { Instance curr; double []probs; for(int i=0; i<artData.numInstances(); i++){ curr = artData.instance(i); //compute the class membership probs predicted by the current ensemble probs = distributionForInstance(curr); //select class label inversely proportional to the ensemble predictions curr.setClassValue(inverseLabel(probs)); } } /** * Select class label such that the probability of selection is * inversely proportional to the ensemble's predictions. * * @param probs class membership probabilities of instance * @return index of class label selected * @exception Exception if instances cannot be labeled successfully */ protected int inverseLabel(double []probs) throws Exception{ double []invProbs = new double[probs.length]; //Produce probability distribution inversely proportional to the given for(int i=0; i<probs.length; i++){ if(probs[i]==0){ invProbs[i] = Double.MAX_VALUE/probs.length; //Account for probability values of 0 - to avoid divide-by-zero errors //Divide by probs.length to make sure normalizing works properly }else{ invProbs[i] = 1.0 / probs[i]; } } Utils.normalize(invProbs); double []cdf = new double[invProbs.length]; //Compute cumulative probabilities cdf[0] = invProbs[0]; for(int i=1; i<invProbs.length; i++){ cdf[i] = invProbs[i]+cdf[i-1]; } if(Double.isNaN(cdf[invProbs.length-1])) System.err.println("Cumulative class membership probability is NaN!"); return selectIndexProbabilistically(cdf); } /** * Given cumulative probabilities select a nominal attribute value index * * @param cdf array of cumulative probabilities * @return index of attribute selected based on the probability distribution */ protected int selectIndexProbabilistically(double []cdf){ double rnd = m_Random.nextDouble(); int index = 0; while(index < cdf.length && rnd > cdf[index]){ index++; } return index; } /** * Removes a specified number of instances from the given set of instances. * * @param data given instances * @param numRemove number of instances to delete from the given instances */ protected void removeInstances(Instances data, int numRemove){ int num = data.numInstances(); for(int i=num - 1; i>num - 1 - numRemove;i--){ data.delete(i); } } /**
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -