⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 naivebayesupdateable.java

📁 wekaUT是 university texas austin 开发的基于weka的半指导学习(semi supervised learning)的分类器
💻 JAVA
字号:
/* *    This program is free software; you can redistribute it and/or modify *    it under the terms of the GNU General Public License as published by *    the Free Software Foundation; either version 2 of the License, or *    (at your option) any later version. * *    This program is distributed in the hope that it will be useful, *    but WITHOUT ANY WARRANTY; without even the implied warranty of *    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the *    GNU General Public License for more details. * *    You should have received a copy of the GNU General Public License *    along with this program; if not, write to the Free Software *    Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. *//* *    NaiveBayesUpdateable.java *    Copyright (C) 1999 Eibe Frank,Len Trigg * */package weka.classifiers.bayes;import weka.classifiers.UpdateableClassifier;import weka.classifiers.Evaluation;/** * Class for a Naive Bayes classifier using estimator classes. This is the * updateable version of NaiveBayes. * This classifier will use a default precision of 0.1 for numeric attributes * when buildClassifier is called with zero training instances. * <p> * For more information on Naive Bayes classifiers, see<p> * * George H. John and Pat Langley (1995). <i>Estimating * Continuous Distributions in Bayesian Classifiers</i>. Proceedings * of the Eleventh Conference on Uncertainty in Artificial * Intelligence. pp. 338-345. Morgan Kaufmann, San Mateo.<p> * * Valid options are:<p> * * -K <br> * Use kernel estimation for modelling numeric attributes rather than * a single normal distribution.<p> * * @author Len Trigg (trigg@cs.waikato.ac.nz) * @author Eibe Frank (eibe@cs.waikato.ac.nz) * @version $Revision: 1.1.1.1 $ */public class NaiveBayesUpdateable extends NaiveBayes   implements UpdateableClassifier {  /**   * Main method for testing this class.   *   * @param argv the options   */  public static void main(String [] argv) {        try {      System.out.println(Evaluation.evaluateModel(new NaiveBayesUpdateable(), argv));    } catch (Exception e) {      e.printStackTrace();      System.err.println(e.getMessage());    }  }}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -