⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 adnode.java

📁 wekaUT是 university texas austin 开发的基于weka的半指导学习(semi supervised learning)的分类器
💻 JAVA
字号:
/* * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. *  * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the * GNU General Public License for more details. *  * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. *//* * ADNode.java * Copyright (C) 2002 Remco Bouckaert *  */package weka.classifiers.bayes;import weka.core.*;import java.util.Vector;/** * The ADNode class implements the ADTree datastructure which increases * the speed with which sub-contingency tables can be constructed from * a data set in an Instances object. For details, see * * Cached Sufficient Statistics for Efficient Machine Learning with Large Datasets * Andrew Moore, and Mary Soon Lee * Journal of Artificial Intelligence Research 8 (1998) 67-91 * * * @author Remco Bouckaert (rrb@xm.co.nz) * @version $Revision: 1.1.1.1 $ */public class ADNode {        static final int MIN_RECORD_SIZE = 5;		/** list of VaryNode children **/	public VaryNode [] m_VaryNodes;	/** list of Instance children (either m_Instances or m_VaryNodes is instantiated) **/	public Instance [] m_Instances;        /** count **/	public int m_nCount;        /** first node in VaryNode array **/        public int m_nStartNode;        /** Creates new ADNode */        public ADNode() {        }	/** create sub tree	 * @param iNode: index of the lowest node in the tree	 * @param nRecords: set of records in instances to be considered	 * @param instances: data set         * @return VaryNode representing part of an ADTree 	 **/	public static VaryNode MakeVaryNode(int iNode, FastVector nRecords, Instances instances) {		VaryNode _VaryNode = new VaryNode(iNode);		int nValues = instances.attribute(iNode).numValues();                		// reserve memory and initialize		FastVector [] nChildRecords = new FastVector[nValues];		for (int iChild = 0; iChild < nValues; iChild++) {			nChildRecords[iChild] = new FastVector();		}		// divide the records among children		for (int iRecord = 0; iRecord < nRecords.size(); iRecord++) {			int iInstance = ((Integer) nRecords.elementAt(iRecord)).intValue();			nChildRecords[(int) instances.instance(iInstance).value(iNode)].addElement(new Integer(iInstance));		}		// find most common value		int nCount = nChildRecords[0].size();		int nMCV = 0; 		for (int iChild = 1; iChild < nValues; iChild++) {			if (nChildRecords[iChild].size() > nCount) {				nCount = nChildRecords[iChild].size();				nMCV = iChild;			}		}                _VaryNode.m_nMCV = nMCV;                // determine child nodes                _VaryNode.m_ADNodes = new ADNode[nValues];		for (int iChild = 0; iChild < nValues; iChild++) {			if (iChild == nMCV || nChildRecords[iChild].size() == 0) {				_VaryNode.m_ADNodes[iChild] = null;			} else {				_VaryNode.m_ADNodes[iChild] = MakeADTree(iNode + 1, nChildRecords[iChild], instances);			}		}		return _VaryNode;	} // MakeVaryNode	/** create sub tree	 * @param iNode: index of the lowest node in the tree	 * @param nRecords: set of records in instances to be considered	 * @param instances: data set         * @return ADNode representing an ADTree	 **/	public static ADNode MakeADTree(int iNode, FastVector nRecords, Instances instances) {		ADNode _ADNode = new ADNode();                _ADNode.m_nCount = nRecords.size();                _ADNode.m_nStartNode = iNode;                if (nRecords.size() < MIN_RECORD_SIZE) {                  _ADNode.m_Instances = new Instance[nRecords.size()];                  for (int iInstance = 0; iInstance < nRecords.size(); iInstance++) {                    _ADNode.m_Instances[iInstance] = instances.instance(((Integer) nRecords.elementAt(iInstance)).intValue());                  }                } else {                  _ADNode.m_VaryNodes = new VaryNode[instances.numAttributes() - iNode];                  for (int iNode2 = iNode; iNode2 < instances.numAttributes(); iNode2++) {                          _ADNode.m_VaryNodes[iNode2 - iNode] = MakeVaryNode(iNode2, nRecords, instances);                  }                }		return _ADNode;	} // MakeADTree	/** create AD tree from set of instances	 * @param instances: data set         * @return ADNode representing an ADTree	 **/	public static ADNode MakeADTree(Instances instances) {          FastVector nRecords = new FastVector(instances.numInstances());          for (int iRecord = 0; iRecord < instances.numInstances(); iRecord++) {            nRecords.addElement(new Integer(iRecord));          }          return MakeADTree(0, nRecords, instances);        } // MakeADTree                  /** get counts for specific instantiation of a set of nodes           * @param nCounts - array for storing counts           * @param nNodes - array of node indexes            * @param nOffsets - offset for nodes in nNodes in nCounts           * @param iNode - index into nNode indicating current node           * @param iOffset - Offset into nCounts due to nodes below iNode           * @param bSubstract - indicate whether counts should be added or substracted           */        public void getCounts(              int [] nCounts,               int [] nNodes,               int [] nOffsets,               int iNode,               int iOffset,              boolean bSubstract        ) {          if (iNode >= nNodes.length) {            if (bSubstract) {              nCounts[iOffset] -= m_nCount;            } else {              nCounts[iOffset] += m_nCount;            }            return;          } else {            if (m_VaryNodes != null) {              m_VaryNodes[nNodes[iNode] - m_nStartNode].getCounts(nCounts, nNodes, nOffsets, iNode, iOffset, this, bSubstract);            } else {              for (int iInstance = 0; iInstance < m_Instances.length; iInstance++) {                int iOffset2 = iOffset;                Instance instance = m_Instances[iInstance];                for (int iNode2 = iNode; iNode2 < nNodes.length; iNode2++) {                  iOffset2 = iOffset2 + nOffsets[iNode2] * (int) instance.value(nNodes[iNode2]);                }                nCounts[iOffset2]++;              }            }          }        } // getCounts          /* print is used for debugging only and shows the ADTree in ASCII graphics           */        public void print() {          String sTab = new String();for (int i = 0; i < m_nStartNode; i++) {sTab = sTab + "  ";}          System.out.println(sTab + "Count = " + m_nCount);          for (int iNode = 0; iNode < m_VaryNodes.length; iNode++) {            System.out.println(sTab + "Node " + (iNode + m_nStartNode));            m_VaryNodes[iNode].print(sTab);          }        }} // class ADNode

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -