⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 stats.java

📁 wekaUT是 university texas austin 开发的基于weka的半指导学习(semi supervised learning)的分类器
💻 JAVA
字号:
/* *    This program is free software; you can redistribute it and/or modify *    it under the terms of the GNU General Public License as published by *    the Free Software Foundation; either version 2 of the License, or *    (at your option) any later version. * *    This program is distributed in the hope that it will be useful, *    but WITHOUT ANY WARRANTY; without even the implied warranty of *    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the *    GNU General Public License for more details. * *    You should have received a copy of the GNU General Public License *    along with this program; if not, write to the Free Software *    Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. *//* *    Stats.java *    Copyright (C) 1999 Eibe Frank * */package weka.classifiers.trees.j48;import weka.core.*;/** * Class implementing a statistical routine needed by J48 to * compute its error estimate. * * @author Eibe Frank (eibe@cs.waikato.ac.nz) * @version $Revision: 1.1.1.1 $ */public class Stats {  /**   * Computes estimated extra error for given total number of instances   * and error using normal approximation to binomial distribution   * (and continuity correction).   *   * @param N number of instances   * @param e observed error   * @param CF confidence value   */  public static double addErrs(double N, double e, float CF){    // Ignore stupid values for CF    if (CF > 0.5) {      System.err.println("WARNING: confidence value for pruning " +			 " too high. Error estimate not modified.");      return 0;    }    // Check for extreme cases at the low end because the    // normal approximation won't work    if (e < 1) {      // Base case (i.e. e == 0) from documenta Geigy Scientific      // Tables, 6th edition, page 185      double base = N * (1 - Math.pow(CF, 1 / N));       if (e == 0) {	return base;       }          // Use linear interpolation between 0 and 1 like C4.5 does      return base + e * (addErrs(N, 1, CF) - base);    }        // Use linear interpolation at the high end (i.e. between N - 0.5    // and N) because of the continuity correction    if (e + 0.5 >= N) {      // Make sure that we never return anything smaller than zero      return Math.max(N - e, 0);    }    // Get z-score corresponding to CF    double z = Statistics.normalInverse(1 - CF);    // Compute upper limit of confidence interval    double  f = (e + 0.5) / N;    double r = (f + (z * z) / (2 * N) +		z * Math.sqrt((f / N) - 			      (f * f / N) + 			      (z * z / (4 * N * N)))) /      (1 + (z * z) / N);    return (r * N) - e;  }}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -