📄 randomtree.java
字号:
/* * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. *//* * RandomTree.java * Copyright (C) 2001 Richard Kirkby, Eibe Frank * */package weka.classifiers.trees;import weka.classifiers.*;import weka.core.*;import java.util.*;/** * Class for constructing a tree that considers K random features at each node. * Performs no pruning. * * @author Eibe Frank (eibe@cs.waikato.ac.nz) * @author Richard Kirkby (rkirkby@cs.waikato.ac.nz) * @version $Revision: 1.1.1.1 $ */public class RandomTree extends DistributionClassifier implements OptionHandler, WeightedInstancesHandler, Randomizable { /** The subtrees appended to this tree. */ protected RandomTree[] m_Successors; /** The attribute to split on. */ protected int m_Attribute = -1; /** The split point. */ protected double m_SplitPoint = Double.NaN; /** The class distribution from the training data. */ protected double[][] m_Distribution = null; /** The header information. */ protected Instances m_Info = null; /** The proportions of training instances going down each branch. */ protected double[] m_Prop = null; /** Class probabilities from the training data. */ protected double[] m_ClassProbs = null; /** Minimum number of instances for leaf. */ protected double m_MinNum = 1.0; /** Debug info */ protected boolean m_Debug = false; /** The number of attributes considered for a split. */ protected int m_KValue = 1; /** Random number generator. */ protected Random m_random; /** The random seed to use. */ protected int m_randomSeed = 1; /** * Get the value of MinNum. * * @return Value of MinNum. */ public double getMinNum() { return m_MinNum; } /** * Set the value of MinNum. * * @param newMinNum Value to assign to MinNum. */ public void setMinNum(double newMinNum) { m_MinNum = newMinNum; } /** * Get the value of K. * * @return Value of K. */ public int getKValue() { return m_KValue; } /** * Set the value of K. * * @param k Value to assign to K. */ public void setKValue(int k) { m_KValue = k; } /** * Get the value of Debug. * * @return Value of Debug. */ public boolean getDebug() { return m_Debug; } /** * Set the value of Debug. * * @param newDebug Value to assign to Debug. */ public void setDebug(boolean newDebug) { m_Debug = newDebug; } /** * Set the seed for random number generation. * * @param seed the seed */ public void setSeed(int seed) { m_randomSeed = seed; } /** * Gets the seed for the random number generations * * @return the seed for the random number generation */ public int getSeed() { return m_randomSeed; } /** * Lists the command-line options for this classifier. */ public Enumeration listOptions() { Vector newVector = new Vector(6); newVector. addElement(new Option("\tNumber of attributes to randomly investigate.", "K", 1, "-K <number of attributes>")); newVector. addElement(new Option("\tSet minimum number of instances per leaf.", "M", 1, "-M <minimum number of instances>")); newVector. addElement(new Option("\tTurns debugging info on.", "D", 0, "-D")); newVector .addElement(new Option("\tSeed for random number generator.\n" + "\t(default 1)", "S", 1, "-S")); return newVector.elements(); } /** * Gets options from this classifier. */ public String[] getOptions() { String [] options = new String [10]; int current = 0; options[current++] = "-K"; options[current++] = "" + getKValue(); options[current++] = "-M"; options[current++] = "" + getMinNum(); options[current++] = "-S"; options[current++] = "" + getSeed(); if (getDebug()) { options[current++] = "-D"; } while (current < options.length) { options[current++] = ""; } return options; } /** * Parses a given list of options. * @param options the list of options as an array of strings * @exception Exception if an option is not supported */ public void setOptions(String[] options) throws Exception{ String kValueString = Utils.getOption('K', options); if (kValueString.length() != 0) { m_KValue = Integer.parseInt(kValueString); } else { m_KValue = 1; } String minNumString = Utils.getOption('M', options); if (minNumString.length() != 0) { m_MinNum = (double)Integer.parseInt(minNumString); } else { m_MinNum = 1; } String seed = Utils.getOption('S', options); if (seed.length() != 0) { setSeed(Integer.parseInt(seed)); } else { setSeed(1); } m_Debug = Utils.getFlag('D', options); Utils.checkForRemainingOptions(options); } /** * Builds classifier. */ public void buildClassifier(Instances data) throws Exception { // Make sure K value is in range if (m_KValue > data.numAttributes()-1) m_KValue = data.numAttributes()-1; // Delete instances with missing class data = new Instances(data); data.deleteWithMissingClass(); Instances train = data; // Create array of sorted indices and weights int[][] sortedIndices = new int[train.numAttributes()][0]; double[][] weights = new double[train.numAttributes()][0]; double[] vals = new double[train.numInstances()]; for (int j = 0; j < train.numAttributes(); j++) { if (j != train.classIndex()) { weights[j] = new double[train.numInstances()]; if (train.attribute(j).isNominal()) { // Handling nominal attributes. Putting indices of // instances with missing values at the end. sortedIndices[j] = new int[train.numInstances()]; int count = 0; for (int i = 0; i < train.numInstances(); i++) { Instance inst = train.instance(i); if (!inst.isMissing(j)) { sortedIndices[j][count] = i; weights[j][count] = inst.weight(); count++; } } for (int i = 0; i < train.numInstances(); i++) { Instance inst = train.instance(i); if (inst.isMissing(j)) { sortedIndices[j][count] = i; weights[j][count] = inst.weight(); count++; } } } else { // Sorted indices are computed for numeric attributes for (int i = 0; i < train.numInstances(); i++) { Instance inst = train.instance(i); vals[i] = inst.value(j); } sortedIndices[j] = Utils.sort(vals); for (int i = 0; i < train.numInstances(); i++) { weights[j][i] = train.instance(sortedIndices[j][i]).weight(); } } } } // Compute initial class counts double[] classProbs = new double[train.numClasses()]; for (int i = 0; i < train.numInstances(); i++) { Instance inst = train.instance(i); classProbs[(int)inst.classValue()] += inst.weight(); } // Create the attribute indices window int[] attIndicesWindow = new int[data.numAttributes()-1]; int j=0; for (int i=0; i<attIndicesWindow.length; i++) { if (j == data.classIndex()) j++; // do not include the class attIndicesWindow[i] = j++; } // Build tree buildTree(sortedIndices, weights, train, classProbs, new Instances(train, 0), m_MinNum, m_Debug, attIndicesWindow); } /** * Computes class distribution of an instance using the decision tree. */ public double[] distributionForInstance(Instance instance) throws Exception { double[] returnedDist = null; if (m_Attribute > -1) { // Node is not a leaf if (instance.isMissing(m_Attribute)) { // Value is missing returnedDist = new double[m_Info.numClasses()]; // Split instance up for (int i = 0; i < m_Successors.length; i++) { double[] help = m_Successors[i].distributionForInstance(instance); if (help != null) { for (int j = 0; j < help.length; j++) { returnedDist[j] += m_Prop[i] * help[j]; } } } } else if (m_Info.attribute(m_Attribute).isNominal()) { // For nominal attributes returnedDist = m_Successors[(int)instance.value(m_Attribute)]. distributionForInstance(instance); } else { // For numeric attributes if (Utils.sm(instance.value(m_Attribute), m_SplitPoint)) { returnedDist = m_Successors[0].distributionForInstance(instance); } else { returnedDist = m_Successors[1].distributionForInstance(instance); } } } if ((m_Attribute == -1) || (returnedDist == null)) { // Node is a leaf or successor is empty return m_ClassProbs; } else { return returnedDist; } } /** * Outputs the decision tree as a graph */ public String toGraph() { try { StringBuffer resultBuff = new StringBuffer(); toGraph(resultBuff, 0); String result = "digraph Tree {\n" + "edge [style=bold]\n" + resultBuff.toString() + "\n}\n"; return result; } catch (Exception e) { return null; } } /** * Outputs one node for graph. */ public int toGraph(StringBuffer text, int num) throws Exception { int maxIndex = Utils.maxIndex(m_ClassProbs); String classValue = m_Info.classAttribute().value(maxIndex); num++; if (m_Attribute == -1) { text.append("N" + Integer.toHexString(hashCode()) + " [label=\"" + num + ": " + classValue + "\"" + "shape=box]\n"); }else { text.append("N" + Integer.toHexString(hashCode()) + " [label=\"" + num + ": " + classValue + "\"]\n"); for (int i = 0; i < m_Successors.length; i++) { text.append("N" + Integer.toHexString(hashCode()) + "->" + "N" + Integer.toHexString(m_Successors[i].hashCode()) + " [label=\"" + m_Info.attribute(m_Attribute).name()); if (m_Info.attribute(m_Attribute).isNumeric()) { if (i == 0) { text.append(" < " + Utils.doubleToString(m_SplitPoint, 2)); } else { text.append(" >= " + Utils.doubleToString(m_SplitPoint, 2)); } } else { text.append(" = " + m_Info.attribute(m_Attribute).value(i)); } text.append("\"]\n"); num = m_Successors[i].toGraph(text, num); } } return num;
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -