⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 univariatelinearregression.java

📁 wekaUT是 university texas austin 开发的基于weka的半指导学习(semi supervised learning)的分类器
💻 JAVA
字号:
/* *    This program is free software; you can redistribute it and/or modify *    it under the terms of the GNU General Public License as published by *    the Free Software Foundation; either version 2 of the License, or *    (at your option) any later version. * *    This program is distributed in the hope that it will be useful, *    but WITHOUT ANY WARRANTY; without even the implied warranty of *    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the *    GNU General Public License for more details. * *    You should have received a copy of the GNU General Public License *    along with this program; if not, write to the Free Software *    Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. *//* *    UnivariateLinearRegression.java *    Copyright (C) 2002 Eibe Frank * */package weka.classifiers.functions;import weka.core.*;import weka.classifiers.*;/** * Class for learning a univariate linear regression model. * Picks the attribute that results in the lowest squared error. * Missing values are not allowed. Can only deal with numeric attributes. * * @author Eibe Frank (eibe@cs.waikato.ac.nz) * @version $Revision: 1.1.1.1 $ */public class UnivariateLinearRegression extends Classifier implements WeightedInstancesHandler {  /** The chosen attribute */  private Attribute m_attribute;  /** The slope */  private double m_slope;    /** The intercept */  private double m_intercept;  public double classifyInstance(Instance inst) throws Exception {        if (m_attribute == null) {      return m_intercept;    } else {      if (inst.isMissing(m_attribute.index())) {	throw new Exception("UnivariateLinearRegression: No missing values!");      }      return m_intercept + m_slope * inst.value(m_attribute.index());    }  }    public void buildClassifier(Instances insts) throws Exception {    // Compute mean of target value    double yMean = insts.meanOrMode(insts.classIndex());    // Choose best attribute    double minMsq = Double.MAX_VALUE;    m_attribute = null;    int chosen = -1;    double chosenSlope = Double.NaN;    double chosenIntercept = Double.NaN;    for (int i = 0; i < insts.numAttributes(); i++) {      if (i != insts.classIndex()) {	if (!insts.attribute(i).isNumeric()) {	  throw new Exception("UnivariateLinearRegression: Only numeric attributes!");	}	m_attribute = insts.attribute(i);	// Compute slope and intercept	double xMean = insts.meanOrMode(i);	double sumWeightedXDiffSquared = 0;	double sumWeightedYDiffSquared = 0;	m_slope = 0;	for (int j = 0; j < insts.numInstances(); j++) {	  Instance inst = insts.instance(j);	  if (!inst.isMissing(i) && !inst.classIsMissing()) {	    double xDiff = inst.value(i) - xMean;	    double yDiff = inst.classValue() - yMean;	    double weightedXDiff = inst.weight() * xDiff;	    double weightedYDiff = inst.weight() * yDiff;	    m_slope += weightedXDiff * yDiff;	    sumWeightedXDiffSquared += weightedXDiff * xDiff;	    sumWeightedYDiffSquared += weightedYDiff * yDiff;	  }	}	// Skip attribute if not useful	if (sumWeightedXDiffSquared == 0) {	  continue;	}	double numerator = m_slope;	m_slope /= sumWeightedXDiffSquared;	m_intercept = yMean - m_slope * xMean;	// Compute sum of squared errors	double msq = sumWeightedYDiffSquared - m_slope * numerator;	// Check whether this is the best attribute	if (msq < minMsq) {	  minMsq = msq;	  chosen = i;	  chosenSlope = m_slope;	  chosenIntercept = m_intercept;	}      }    }    // Set parameters    if (chosen == -1) {      System.err.println("----- no useful attribute found");      m_attribute = null;      m_slope = 0;      m_intercept = yMean;    } else {      m_attribute = insts.attribute(chosen);      m_slope = chosenSlope;      m_intercept = chosenIntercept;    }  }  public String toString() {    if (m_attribute == null) {      return "No model built yet.";    }    StringBuffer text = new StringBuffer();    if (m_attribute == null) {      text.append("Predicting constant " + m_intercept);    } else {      text.append("Linear regression on " + m_attribute.name() + "\n\n");      text.append(Utils.doubleToString(m_slope,2) + " * " + 		m_attribute.name());      if (m_intercept > 0) {	text.append(" + " + Utils.doubleToString(m_intercept, 2));      } else {      text.append(" - " + Utils.doubleToString((-m_intercept), 2));       }    }    text.append("\n");    return text.toString();  }  /**   * Main method for testing this class   *   * @param argv options   */  public static void main(String [] argv){    try{      System.out.println(Evaluation.evaluateModel(new UnivariateLinearRegression(), argv));    } catch (Exception e) {      System.out.println(e.getMessage());      e.printStackTrace();    }  } }

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -