📄 matrix.java
字号:
} return X; } /** One norm @return maximum column sum. */ public double norm1 () { double f = 0; for (int j = 0; j < n; j++) { double s = 0; for (int i = 0; i < m; i++) { s += Math.abs(A[i][j]); } f = Math.max(f,s); } return f; } /** Infinity norm @return maximum row sum. */ public double normInf () { double f = 0; for (int i = 0; i < m; i++) { double s = 0; for (int j = 0; j < n; j++) { s += Math.abs(A[i][j]); } f = Math.max(f,s); } return f; } /** Frobenius norm @return sqrt of sum of squares of all elements. */ public double normF () { double f = 0; for (int i = 0; i < m; i++) { for (int j = 0; j < n; j++) { f = Maths.hypot(f,A[i][j]); } } return f; } /** Unary minus @return -A */ public Matrix uminus () { Matrix X = new Matrix(m,n); double[][] C = X.getArray(); for (int i = 0; i < m; i++) { for (int j = 0; j < n; j++) { C[i][j] = -A[i][j]; } } return X; } /** C = A + B @param B another matrix @return A + B */ public Matrix plus (Matrix B) { checkMatrixDimensions(B); Matrix X = new Matrix(m,n); double[][] C = X.getArray(); for (int i = 0; i < m; i++) { for (int j = 0; j < n; j++) { C[i][j] = A[i][j] + B.A[i][j]; } } return X; } /** A = A + B @param B another matrix @return A + B */ public Matrix plusEquals (Matrix B) { checkMatrixDimensions(B); for (int i = 0; i < m; i++) { for (int j = 0; j < n; j++) { A[i][j] = A[i][j] + B.A[i][j]; } } return this; } /** C = A - B @param B another matrix @return A - B */ public Matrix minus (Matrix B) { checkMatrixDimensions(B); Matrix X = new Matrix(m,n); double[][] C = X.getArray(); for (int i = 0; i < m; i++) { for (int j = 0; j < n; j++) { C[i][j] = A[i][j] - B.A[i][j]; } } return X; } /** A = A - B @param B another matrix @return A - B */ public Matrix minusEquals (Matrix B) { checkMatrixDimensions(B); for (int i = 0; i < m; i++) { for (int j = 0; j < n; j++) { A[i][j] = A[i][j] - B.A[i][j]; } } return this; } /** Element-by-element multiplication, C = A.*B @param B another matrix @return A.*B */ public Matrix arrayTimes (Matrix B) { checkMatrixDimensions(B); Matrix X = new Matrix(m,n); double[][] C = X.getArray(); for (int i = 0; i < m; i++) { for (int j = 0; j < n; j++) { C[i][j] = A[i][j] * B.A[i][j]; } } return X; } /** Element-by-element multiplication in place, A = A.*B @param B another matrix @return A.*B */ public Matrix arrayTimesEquals (Matrix B) { checkMatrixDimensions(B); for (int i = 0; i < m; i++) { for (int j = 0; j < n; j++) { A[i][j] = A[i][j] * B.A[i][j]; } } return this; } /** Element-by-element right division, C = A./B @param B another matrix @return A./B */ public Matrix arrayRightDivide (Matrix B) { checkMatrixDimensions(B); Matrix X = new Matrix(m,n); double[][] C = X.getArray(); for (int i = 0; i < m; i++) { for (int j = 0; j < n; j++) { C[i][j] = A[i][j] / B.A[i][j]; } } return X; } /** Element-by-element right division in place, A = A./B @param B another matrix @return A./B */ public Matrix arrayRightDivideEquals (Matrix B) { checkMatrixDimensions(B); for (int i = 0; i < m; i++) { for (int j = 0; j < n; j++) { A[i][j] = A[i][j] / B.A[i][j]; } } return this; } /** Element-by-element left division, C = A.\B @param B another matrix @return A.\B */ public Matrix arrayLeftDivide (Matrix B) { checkMatrixDimensions(B); Matrix X = new Matrix(m,n); double[][] C = X.getArray(); for (int i = 0; i < m; i++) { for (int j = 0; j < n; j++) { C[i][j] = B.A[i][j] / A[i][j]; } } return X; } /** Element-by-element left division in place, A = A.\B @param B another matrix @return A.\B */ public Matrix arrayLeftDivideEquals (Matrix B) { checkMatrixDimensions(B); for (int i = 0; i < m; i++) { for (int j = 0; j < n; j++) { A[i][j] = B.A[i][j] / A[i][j]; } } return this; } /** Multiply a matrix by a scalar, C = s*A @param s scalar @return s*A */ public Matrix times (double s) { Matrix X = new Matrix(m,n); double[][] C = X.getArray(); for (int i = 0; i < m; i++) { for (int j = 0; j < n; j++) { C[i][j] = s*A[i][j]; } } return X; } /** Multiply a matrix by a scalar in place, A = s*A @param s scalar @return replace A by s*A */ public Matrix timesEquals (double s) { for (int i = 0; i < m; i++) { for (int j = 0; j < n; j++) { A[i][j] = s*A[i][j]; } } return this; } /** Linear algebraic matrix multiplication, A * B @param B another matrix @return Matrix product, A * B @exception IllegalArgumentException Matrix inner dimensions must agree. */ public Matrix times (Matrix B) { if (B.m != n) { throw new IllegalArgumentException("Matrix inner dimensions must agree."); } Matrix X = new Matrix(m,B.n); double[][] C = X.getArray(); double[] Bcolj = new double[n]; for (int j = 0; j < B.n; j++) { for (int k = 0; k < n; k++) { Bcolj[k] = B.A[k][j]; } for (int i = 0; i < m; i++) { double[] Arowi = A[i]; double s = 0; for (int k = 0; k < n; k++) { s += Arowi[k]*Bcolj[k]; } C[i][j] = s; } } return X; } /** Matrix trace. @return sum of the diagonal elements. */ public double trace () { double t = 0; for (int i = 0; i < Math.min(m,n); i++) { t += A[i][i]; } return t; } /** Generate matrix with random elements @param m Number of rows. @param n Number of colums. @return An m-by-n matrix with uniformly distributed random elements. */ public static Matrix random( int m, int n ) { Matrix A = new Matrix(m,n); double[][] X = A.getArray(); for (int i = 0; i < m; i++) { for (int j = 0; j < n; j++) { X[i][j] = Math.random(); } } return A; } /** Generate identity matrix @param m Number of rows. @param n Number of colums. @return An m-by-n matrix with ones on the diagonal and zeros elsewhere. */ public static Matrix identity (int m, int n) { Matrix A = new Matrix(m,n); double[][] X = A.getArray(); for (int i = 0; i < m; i++) { for (int j = 0; j < n; j++) { X[i][j] = (i == j ? 1.0 : 0.0); } } return A; } /** Print the matrix to stdout. Line the elements up in columns * with a Fortran-like 'Fw.d' style format. @param w Column width. @param d Number of digits after the decimal. */ public void print (int w, int d) { print(new PrintWriter(System.out,true),w,d); } /** Print the matrix to the output stream. Line the elements up in * columns with a Fortran-like 'Fw.d' style format. @param output Output stream. @param w Column width. @param d Number of digits after the decimal. */ public void print (PrintWriter output, int w, int d) { DecimalFormat format = new DecimalFormat(); format.setDecimalFormatSymbols(new DecimalFormatSymbols(Locale.US)); format.setMinimumIntegerDigits(1); format.setMaximumFractionDigits(d); format.setMinimumFractionDigits(d); format.setGroupingUsed(false); print(output,format,w+2); } /** Print the matrix to stdout. Line the elements up in columns. * Use the format object, and right justify within columns of width * characters. * Note that is the matrix is to be read back in, you probably will want * to use a NumberFormat that is set to US Locale. @param format A Formatting object for individual elements. @param width Field width for each column. @see java.text.DecimalFormat#setDecimalFormatSymbols */ public void print (NumberFormat format, int width) { print(new PrintWriter(System.out,true),format,width); } // DecimalFormat is a little disappointing coming from Fortran or C's printf. // Since it doesn't pad on the left, the elements will come out different // widths. Consequently, we'll pass the desired column width in as an // argument and do the extra padding ourselves. /** Print the matrix to the output stream. Line the elements up in columns. * Use the format object, and right justify within columns of width * characters. * Note that is the matrix is to be read back in, you probably will want * to use a NumberFormat that is set to US Locale. @param output the output stream. @param format A formatting object to format the matrix elements @param width Column width. @see java.text.DecimalFormat#setDecimalFormatSymbols */ public void print (PrintWriter output, NumberFormat format, int width) { output.println(); // start on new line. for (int i = 0; i < m; i++) { for (int j = 0; j < n; j++) { String s = format.format(A[i][j]); // format the number int padding = Math.max(1,width-s.length()); // At _least_ 1 space for (int k = 0; k < padding; k++) output.print(' '); output.print(s); } output.println(); } output.println(); // end with blank line. } /** Read a matrix from a stream. The format is the same the print method, * so printed matrices can be read back in (provided they were printed using * US Locale). Elements are separated by * whitespace, all the elements for each row appear on a single line, * the last row is followed by a blank line. @param input the input stream. */ public static Matrix read (BufferedReader input) throws java.io.IOException { StreamTokenizer tokenizer= new StreamTokenizer(input); // Although StreamTokenizer will parse numbers, it doesn't recognize // scientific notation (E or D); however, Double.valueOf does. // The strategy here is to disable StreamTokenizer's number parsing. // We'll only get whitespace delimited words, EOL's and EOF's. // These words should all be numbers, for Double.valueOf to parse. tokenizer.resetSyntax(); tokenizer.wordChars(0,255); tokenizer.whitespaceChars(0, ' '); tokenizer.eolIsSignificant(true); java.util.Vector v = new java.util.Vector(); // Ignore initial empty lines while (tokenizer.nextToken() == StreamTokenizer.TT_EOL); if (tokenizer.ttype == StreamTokenizer.TT_EOF) throw new java.io.IOException("Unexpected EOF on matrix read."); do { v.addElement(Double.valueOf(tokenizer.sval)); // Read & store 1st row. } while (tokenizer.nextToken() == StreamTokenizer.TT_WORD); int n = v.size(); // Now we've got the number of columns! double row[] = new double[n]; for (int j=0; j<n; j++) // extract the elements of the 1st row. row[j]=((Double)v.elementAt(j)).doubleValue(); v.removeAllElements(); v.addElement(row); // Start storing rows instead of columns. while (tokenizer.nextToken() == StreamTokenizer.TT_WORD) { // While non-empty lines v.addElement(row = new double[n]); int j = 0; do { if (j >= n) throw new java.io.IOException ("Row " + v.size() + " is too long."); row[j++] = Double.valueOf(tokenizer.sval).doubleValue(); } while (tokenizer.nextToken() == StreamTokenizer.TT_WORD); if (j < n) throw new java.io.IOException ("Row " + v.size() + " is too short."); } int m = v.size(); // Now we've got the number of rows. double[][] A = new double[m][]; v.copyInto(A); // copy the rows out of the vector return new Matrix(A); }/* ------------------------ Private Methods * ------------------------ */ /** Check if size(A) == size(B) **/ private void checkMatrixDimensions (Matrix B) { if (B.m != m || B.n != n) { throw new IllegalArgumentException("Matrix dimensions must agree."); } }}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -