⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 gaborconvolve.m

📁 code for iris recognition
💻 M
字号:
% gaborconvolve - function for convolving each row of an image with 1D log-Gabor filters%% Usage: % [template, mask] = createiristemplate(eyeimage_filename)%% Arguments:%   im              - the image to convolve%   nscale          - number of filters to use%   minWaveLength   - wavelength of the basis filter%   mult            - multiplicative factor between each filter%   sigmaOnf        - Ratio of the standard deviation of the Gaussian describing%                     the log Gabor filter's transfer function in the frequency%                     domain to the filter center frequency.%% Output:%   E0              - a 1D cell array of complex valued comvolution results%% Author: % Original 'gaborconvolve' by Peter Kovesi, 2001% Heavily modified by Libor Masek, 2003% masekl01@csse.uwa.edu.au% School of Computer Science & Software Engineering% The University of Western Australia% November 2003function [EO, filtersum] = gaborconvolve(im, nscale, minWaveLength, mult, ...    sigmaOnf)[rows cols] = size(im);		filtersum = zeros(1,size(im,2));EO = cell(1, nscale);          % Pre-allocate cell arrayndata = cols;if mod(ndata,2) == 1             % If there is an odd No of data points     ndata = ndata-1;               % throw away the last one.endlogGabor  = zeros(1,ndata);result = zeros(rows,ndata);radius =  [0:fix(ndata/2)]/fix(ndata/2)/2;  % Frequency values 0 - 0.5radius(1) = 1;wavelength = minWaveLength;        % Initialize filter wavelength.for s = 1:nscale,                  % For each scale.          % Construct the filter - first calculate the radial filter component.    fo = 1.0/wavelength;                  % Centre frequency of filter.    rfo = fo/0.5;                         % Normalised radius from centre of frequency plane     % corresponding to fo.    logGabor(1:ndata/2+1) = exp((-(log(radius/fo)).^2) / (2 * log(sigmaOnf)^2));      logGabor(1) = 0;          filter = logGabor;        filtersum = filtersum+filter;        % for each row of the input image, do the convolution, back transform    for r = 1:rows	% For each row                signal = im(r,1:ndata);                        imagefft = fft( signal );                        result(r,:) = ifft(imagefft .* filter);            end        % save the ouput for each scale    EO{s} = result;        wavelength = wavelength * mult;       % Finally calculate Wavelength of next filterend                                     % ... and process the next scalefiltersum = fftshift(filtersum);

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -