📄 syslib.c
字号:
*(UINT32 *)(V3_BASE + V3_LB_BASE0) = INTEGRATOR_PCI_BASE | (0x80 | V3_LB_BASE_M_ENABLE); *(UINT16 *)(V3_BASE + V3_LB_MAP0) = ((INTEGRATOR_PCI_BASE >> 20) << 0x4) | 0x0006; /* Map second 256 Mbytes as prefetchable via BASE1/MAP1 */ *(UINT32 *)(V3_BASE + V3_LB_BASE1) = INTEGRATOR_PCI_BASE | (0x84 | V3_LB_BASE_M_ENABLE); *(UINT16 *)(V3_BASE + V3_LB_MAP1) = (((INTEGRATOR_PCI_BASE + SZ_256M) >> 20) << 4) | 0x0006; /* * Allow accesses to PCI Configuration space * and set up A1, A0 for type 1 config cycles */ *(UINT16 *)(V3_BASE + V3_PCI_CFG) = ((*(UINT16 *)(V3_BASE + V3_PCI_CFG)) & ~(V3_PCI_CFG_M_RETRY_EN | V3_PCI_CFG_M_AD_LOW1) ) | V3_PCI_CFG_M_AD_LOW0; /* now we can allow in PCI MEMORY accesses */ *(UINT16 *)(V3_BASE + V3_PCI_CMD) = (*(UINT16 *)(V3_BASE + V3_PCI_CMD)) | V3_COMMAND_M_MEM_EN; /* * Set RST_OUT to take the PCI bus is out of reset, PCI devices can * initialize and lock the V3 system register so that no one else * can play with it */ *(UINT16 *)(V3_BASE + V3_SYSTEM) = (*(UINT16 *)(V3_BASE + V3_SYSTEM)) | V3_SYSTEM_M_RST_OUT; *(UINT16 *)(V3_BASE + V3_SYSTEM) = (*(UINT16 *)(V3_BASE + V3_SYSTEM)) | V3_SYSTEM_M_LOCK; return; }#endif /* defined(INCLUDE_PCI) *//********************************************************************************* sysHwInit - initialize the CPU board hardware** This routine initializes various features of the hardware.* Normally, it is called from usrInit() in usrConfig.c.** NOTE: This routine should not be called directly by the user.** RETURNS: N/A*/void sysHwInit (void) { /* install the IRQ/SVC interrupt stack splitting routine */#ifdef POWER_MGT_INSTRUMENT UINT16 leds; AMBA_TIMER_READ (LED_LIGHTS,leds); leds = leds & ~LED_2; AMBA_TIMER_WRITE (LED_LIGHTS, leds);#endif#ifndef _ARCH_SUPPORTS_PROTECT_INTERRUPT_STACK _func_armIntStackSplit = sysIntStackSplit;#endif /* !_ARCH_SUPPORTS_PROTECT_INTERRUPT_STACK */#if defined(INCLUDE_PCI) /* Initialize the V3 PCI bridge controller */ sysV3Init(); /* Initialize PCI driver library. */ if (pciIomapLibInit (PCI_MECHANISM_3, CPU_PCI_CNFG_ADRS, CPU_PCI_CNFG_ADRS, 0) != OK) sysToMonitor (BOOT_NO_AUTOBOOT);#endif /* INCLUDE_PCI */#if defined(INCLUDE_TTY_DEV) || defined(INCLUDE_SIO_POLL) /* initialize the serial devices */ sysSerialHwInit (); /* initialize serial data structure */#endif /* INCLUDE_TTY_DEV || INCLUDE_SIO_POLL */#ifdef POWER_MGT_INSTRUMENT AMBA_TIMER_READ (LED_LIGHTS,leds); leds = leds | LED_2; AMBA_TIMER_WRITE (LED_LIGHTS, leds);#endif#ifdef INCLUDE_POWER_MGMT_CPU_BSP_SUPPORT sysCpuPwrInit ();#endif /* INCLUDE_POWER_MGMT_CPU_BSP_SUPPORT */#ifdef POWER_MGT_INSTRUMENT AMBA_TIMER_READ (LED_LIGHTS,leds); leds = leds & ~LED_2; AMBA_TIMER_WRITE (LED_LIGHTS, leds);#endif }/********************************************************************************* sysHwInit2 - additional system configuration and initialization** This routine connects system interrupts and does any additional* configuration necessary. Note that this is called from* sysClkConnect() in the timer driver.** RETURNS: N/A*/void sysHwInit2 (void) { static BOOL initialised = FALSE; if (initialised) return; /* initialize the interrupt library and interrupt driver */ intLibInit (AMBA_INT_NUM_LEVELS, AMBA_INT_NUM_LEVELS, INT_MODE); ambaIntDevInit(); /* connect sys clock interrupt and auxiliary clock interrupt */ (void)intConnect (INUM_TO_IVEC (SYS_TIMER_INT_VEC), sysClkInt, 0); (void)intConnect (INUM_TO_IVEC (AUX_TIMER_INT_VEC), sysAuxClkInt, 0);#ifdef INCLUDE_POWER_MGMT_CPU_BSP_SUPPORT /* connect sleep clock interrupt */ (void)intConnect (INUM_TO_IVEC (INT_LVL_TIMER_2), sysOneShotInt, 0);#endif /* INCLUDE_POWER_MGMT_CPU_BSP_SUPPORT */#ifdef INCLUDE_TTY_DEV /* connect serial interrupt */ sysSerialHwInit2 ();#endif /* INCLUDE_TTY_DEV */#if defined (INCLUDE_PCI)#if defined (INCLUDE_DEC21X40END) || defined (INCLUDE_FEI82557END) /* map all appropriate Ethernet PCI device memory and I/O addresses */ sysLanPciInit ();#endif /* INCLUDE_DEC21X40END/FEI82557END */#if defined (INCLUDE_USB) /* Low level init for usb */ sysUsbPciInit ();#endif#endif /* INCLUDE_PCI */ initialised = TRUE; }/********************************************************************************* sysPhysMemTop - get the address of the top of physical memory** This routine returns the address of the first missing byte of memory,* which indicates the top of memory.** Normally, the user specifies the amount of physical memory with the* macro LOCAL_MEM_SIZE in config.h. BSPs that support run-time* memory sizing do so only if the macro LOCAL_MEM_AUTOSIZE is defined.* If not defined, then LOCAL_MEM_SIZE is assumed to be, and must be, the* true size of physical memory.** NOTE: Do no adjust LOCAL_MEM_SIZE to reserve memory for application* use. See sysMemTop() for more information on reserving memory.** RETURNS: The address of the top of physical memory.** SEE ALSO: sysMemTop()*/char * sysPhysMemTop (void) { static char * physTop = NULL; if (physTop == NULL) {#ifdef LOCAL_MEM_AUTOSIZE /* If auto-sizing is possible, this would be the spot. */#if defined(INCLUDE_MMU)#if defined(CPU_720T) || defined(CPU_720T_T) || \ defined(CPU_920T) || defined(CPU_920T_T) || \ defined(CPU_926E) || defined(CPU_926E_T) || \ defined(CPU_1020E) || defined(CPU_1022E) || \ defined(CPU_1136JF) physTop = (char *)(LOCAL_MEM_LOCAL_ADRS + sysPhysMemDesc[0].len);#else physTop = (char *)(sysPhysMemDesc[1].len);#endif /* MMU Based CPUs */#else physTop = (char *)(LOCAL_MEM_LOCAL_ADRS + LOCAL_MEM_SIZE);#endif /* defined(INCLUDE_MMU) */#else /* LOCAL_MEM_AUTOSIZE */ /* Don't do autosizing, if size is given */ physTop = (char *)(LOCAL_MEM_LOCAL_ADRS + LOCAL_MEM_SIZE);#endif /* LOCAL_MEM_AUTOSIZE */ } return physTop; }/********************************************************************************* sysMemTop - get the address of the top of VxWorks memory** This routine returns a pointer to the first byte of memory not* controlled or used by VxWorks.** The user can reserve memory space by defining the macro USER_RESERVED_MEM* in config.h. This routine returns the address of the reserved memory* area. The value of USER_RESERVED_MEM is in bytes.** RETURNS: The address of the top of VxWorks memory.*/char * sysMemTop (void) { static char * memTop = NULL; if (memTop == NULL) {#ifdef INCLUDE_EDR_PM memTop = (char *)sysPhysMemTop () - USER_RESERVED_MEM - PM_RESERVED_MEM;#else memTop = (char *)sysPhysMemTop () - USER_RESERVED_MEM;#endif } return (memTop); }/********************************************************************************* sysToMonitor - transfer control to the ROM monitor** This routine transfers control to the ROM monitor. It is usually called* only by reboot() -- which services ^X -- and bus errors at interrupt* level. However, in some circumstances, the user may wish to introduce a* new <startType> to enable special boot ROM facilities.** RETURNS: Does not return*/STATUS sysToMonitor ( int startType /* passed to ROM to tell it how to boot */ ) { FUNCPTR pRom; UINT32 * p = (UINT32 *)ROM_TEXT_ADRS;#ifdef INCLUDE_TTY_DEV sysSerialReset (); /* put serial devices into quiet state */#endif /* INCLUDE_TTY_DEV */ sysClkDisable(); intIFLock (); /* * Examine ROM - if it's a VxWorks boot ROM, jump to the warm boot entry * point; otherwise jump to the start of the ROM. * A VxWorks boot ROM begins * MOV R0,#BOOT_COLD * B ... * DCB "Copyright" * We check the first and third words only. This could be tightened up * if required (see romInit.s). */ if (p[0] == 0xE3A00002 && p[2] == 0x79706F43) pRom = (FUNCPTR)(ROM_TEXT_ADRS + 4); /* warm boot address */ else pRom = (FUNCPTR)ROM_TEXT_ADRS; /* start of ROM */#ifdef INCLUDE_MMU#if defined(CPU_720T) || defined(CPU_720T_T) || \ defined(CPU_740T) || defined(CPU_740T_T) || \ defined(CPU_920T) || defined(CPU_920T_T) || \ defined(CPU_926E) || defined(CPU_926E_T) || \ defined(CPU_940T) || defined(CPU_940T_T) || \ defined(CPU_946ES) || defined(CPU_946ES_T) || \ defined(CPU_1020E) || defined(CPU_1022E) || \ defined(CPU_1136JF) VM_ENABLE(FALSE); /* disable the MMU, cache(s) and write-buffer */#endif#endif /* INCLUDE_MMU */#ifdef INCLUDE_CACHE_SUPPORT#if defined(CPU_920T) || defined(CPU_920T_T) /* * On 920T, can have the I-cache enabled once the MMU has been * disabled, so, unlike the other processors, disabling the MMU does * not disable the I-cache. This would not be a problem, as the * 920T boot ROM initialization code disables and flushes both caches. * However, in case we are, in fact, using a 7TDMI boot ROM, * disable and flush the I-cache here, or else the boot process may * fail. */ cacheDisable (INSTRUCTION_CACHE);#endif /* defined(CPU_920T/920T_T) */#endif /* INCLUDE_CACHE_SUPPORT */ (*pRom)(startType); /* jump to boot ROM */ return OK; /* in case we ever continue from ROM monitor */ }/****************************************************************************** sysProcNumGet - get the processor number** This routine returns the processor number for the CPU board, which is* set with sysProcNumSet().** RETURNS: The processor number for the CPU board.** SEE ALSO: sysProcNumSet()*/int sysProcNumGet (void) { return 0; }/****************************************************************************** sysProcNumSet - set the processor number** Set the processor number for the CPU board. Processor numbers should be* unique on a single backplane.** NOTE* By convention, only processor 0 should dual-port its memory.** RETURNS: N/A** SEE ALSO: sysProcNumGet()*/void sysProcNumSet ( int procNum /* processor number */ ) { sysProcNum = procNum; }/******************************************************************************** sysLedsReadWrite - read/write the state of the LEDs on the board** This routine can be used to read and write the state of the four LEDs* on the board. The current state is ANDed and EORed with the supplied* parameters. Bits 0..3 control LEDs 0..3. A 1 switches the LED on; a 0 off.** RETURNS: previous state of LEDs.*/int sysLedsReadWrite ( int and, int eor ) { UINT32 current, previous; int oldLevel; oldLevel = intLock(); /* read current value from hardware and mask off undefined bits */ current = *((volatile UINT32 *)LED_LIGHTS) & LED_LEDS_MASK; previous = current; current = (current & and) ^ eor; /* wait for display status to be idle */ while (*((volatile UINT32 *)LED_ALPHA) & LED_STATUS) ; /* set new value */ *((volatile UINT32 *)LED_LIGHTS) = current; intUnlock (oldLevel); return previous; }#ifdef INCLUDE_FLASH/******************************************************************************** sysFlashWriteEnable - enable write access to the Flash memory** This routine is used by flashMem.c to enable write access to the* Flash memory.** RETURNS: N/A*/void sysFlashWriteEnable (void) { volatile UINT32 * ebiCsr = (volatile UINT32 *)INTEGRATOR_EBI_CSR1; /* allow write access to EBI_CSR1 area (Flash ) */ *ebiCsr |= INTEGRATOR_EBI_WRITE_ENABLE; if (!(*ebiCsr & INTEGRATOR_EBI_WRITE_ENABLE)) { *(volatile UINT32 *)INTEGRATOR_EBI_LOCK = 0xA05F; *ebiCsr |= INTEGRATOR_EBI_WRITE_ENABLE; *(volatile UINT32 *)INTEGRATOR_EBI_LOCK = 0; } /* Enable Vpp and allow write access to Flash in system controller */ *(volatile UINT32 *)INTEGRATOR_SC_CTRLS = FL_SC_CONTROL; }/******************************************************************************** sysFlashWriteDisable - disable write access to the Flash memory** This routine is used by flashMem.c to disable write access to the* Flash memory.** RETURNS: N/A*/void sysFlashWriteDisable (void) { volatile UINT32 * ebiCsr = (volatile UINT32 *)INTEGRATOR_EBI_CSR1; /* disable write access to EBI_CSR1 area (Flash ) */ *ebiCsr &= ~INTEGRATOR_EBI_WRITE_ENABLE; if (*ebiCsr & INTEGRATOR_EBI_WRITE_ENABLE) { *(volatile UINT32 *)INTEGRATOR_EBI_LOCK = 0xA05F; *ebiCsr &= ~INTEGRATOR_EBI_WRITE_ENABLE; *(volatile UINT32 *)INTEGRATOR_EBI_LOCK = 0; } /* Disable Vpp and disable write access to Flash in system controller */ *(volatile UINT32 *)INTEGRATOR_SC_CTRLS = 0; }#endif /* INCLUDE_FLASH */
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -