⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 lpc.c

📁 在x86平台上运行不可信任代码的sandbox。
💻 C
字号:
/* libFLAC - Free Lossless Audio Codec library * Copyright (C) 2000,2001,2002,2003,2004,2005  Josh Coalson * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * - Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * - Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * - Neither the name of the Xiph.org Foundation nor the names of its * contributors may be used to endorse or promote products derived from * this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */#include <math.h>#include "FLAC/assert.h"#include "FLAC/format.h"#include "private/bitmath.h"#include "private/lpc.h"#if defined DEBUG || defined FLAC__OVERFLOW_DETECT || defined FLAC__OVERFLOW_DETECT_VERBOSE#include <stdio.h>#endif#ifndef FLAC__INTEGER_ONLY_LIBRARY#ifndef M_LN2/* math.h in VC++ doesn't seem to have this (how Microsoft is that?) */#define M_LN2 0.69314718055994530942#endifvoid FLAC__lpc_compute_autocorrelation(const FLAC__real data[], unsigned data_len, unsigned lag, FLAC__real autoc[]){	/* a readable, but slower, version */#if 0	FLAC__real d;	unsigned i;	FLAC__ASSERT(lag > 0);	FLAC__ASSERT(lag <= data_len);	while(lag--) {		for(i = lag, d = 0.0; i < data_len; i++)			d += data[i] * data[i - lag];		autoc[lag] = d;	}#endif	/*	 * this version tends to run faster because of better data locality	 * ('data_len' is usually much larger than 'lag')	 */	FLAC__real d;	unsigned sample, coeff;	const unsigned limit = data_len - lag;	FLAC__ASSERT(lag > 0);	FLAC__ASSERT(lag <= data_len);	for(coeff = 0; coeff < lag; coeff++)		autoc[coeff] = 0.0;	for(sample = 0; sample <= limit; sample++) {		d = data[sample];		for(coeff = 0; coeff < lag; coeff++)			autoc[coeff] += d * data[sample+coeff];	}	for(; sample < data_len; sample++) {		d = data[sample];		for(coeff = 0; coeff < data_len - sample; coeff++)			autoc[coeff] += d * data[sample+coeff];	}}void FLAC__lpc_compute_lp_coefficients(const FLAC__real autoc[], unsigned max_order, FLAC__real lp_coeff[][FLAC__MAX_LPC_ORDER], FLAC__double error[]){	unsigned i, j;	FLAC__double r, err, ref[FLAC__MAX_LPC_ORDER], lpc[FLAC__MAX_LPC_ORDER];	FLAC__ASSERT(0 < max_order);	FLAC__ASSERT(max_order <= FLAC__MAX_LPC_ORDER);	FLAC__ASSERT(autoc[0] != 0.0);	err = autoc[0];	for(i = 0; i < max_order; i++) {		/* Sum up this iteration's reflection coefficient. */		r = -autoc[i+1];		for(j = 0; j < i; j++)			r -= lpc[j] * autoc[i-j];		ref[i] = (r/=err);		/* Update LPC coefficients and total error. */		lpc[i]=r;		for(j = 0; j < (i>>1); j++) {			FLAC__double tmp = lpc[j];			lpc[j] += r * lpc[i-1-j];			lpc[i-1-j] += r * tmp;		}		if(i & 1)			lpc[j] += lpc[j] * r;		err *= (1.0 - r * r);		/* save this order */		for(j = 0; j <= i; j++)			lp_coeff[i][j] = (FLAC__real)(-lpc[j]); /* negate FIR filter coeff to get predictor coeff */		error[i] = err;	}}int FLAC__lpc_quantize_coefficients(const FLAC__real lp_coeff[], unsigned order, unsigned precision, FLAC__int32 qlp_coeff[], int *shift){	unsigned i;	FLAC__double d, cmax = -1e32;	FLAC__int32 qmax, qmin;	const int max_shiftlimit = (1 << (FLAC__SUBFRAME_LPC_QLP_SHIFT_LEN-1)) - 1;	const int min_shiftlimit = -max_shiftlimit - 1;	FLAC__ASSERT(precision > 0);	FLAC__ASSERT(precision >= FLAC__MIN_QLP_COEFF_PRECISION);	/* drop one bit for the sign; from here on out we consider only |lp_coeff[i]| */	precision--;	qmax = 1 << precision;	qmin = -qmax;	qmax--;	for(i = 0; i < order; i++) {		if(lp_coeff[i] == 0.0)			continue;		d = fabs(lp_coeff[i]);		if(d > cmax)			cmax = d;	}redo_it:	if(cmax <= 0.0) {		/* => coefficients are all 0, which means our constant-detect didn't work */		return 2;	}	else {		int log2cmax;		(void)frexp(cmax, &log2cmax);		log2cmax--;		*shift = (int)precision - log2cmax - 1;		if(*shift < min_shiftlimit || *shift > max_shiftlimit) {#if 0			/*@@@ this does not seem to help at all, but was not extensively tested either: */			if(*shift > max_shiftlimit)				*shift = max_shiftlimit;			else#endif				return 1;		}	}	if(*shift >= 0) {		for(i = 0; i < order; i++) {			qlp_coeff[i] = (FLAC__int32)floor((FLAC__double)lp_coeff[i] * (FLAC__double)(1 << *shift));			/* double-check the result */			if(qlp_coeff[i] > qmax || qlp_coeff[i] < qmin) {#ifdef FLAC__OVERFLOW_DETECT				fprintf(stderr,"FLAC__lpc_quantize_coefficients: compensating for overflow, qlp_coeff[%u]=%d, lp_coeff[%u]=%f, cmax=%f, precision=%u, shift=%d, q=%f, f(q)=%f\n", i, qlp_coeff[i], i, lp_coeff[i], cmax, precision, *shift, (FLAC__double)lp_coeff[i] * (FLAC__double)(1 << *shift), floor((FLAC__double)lp_coeff[i] * (FLAC__double)(1 << *shift)));#endif				cmax *= 2.0;				goto redo_it;			}		}	}	else { /* (*shift < 0) */		const int nshift = -(*shift);#ifdef DEBUG		fprintf(stderr,"FLAC__lpc_quantize_coefficients: negative shift = %d\n", *shift);#endif		for(i = 0; i < order; i++) {			qlp_coeff[i] = (FLAC__int32)floor((FLAC__double)lp_coeff[i] / (FLAC__double)(1 << nshift));			/* double-check the result */			if(qlp_coeff[i] > qmax || qlp_coeff[i] < qmin) {#ifdef FLAC__OVERFLOW_DETECT				fprintf(stderr,"FLAC__lpc_quantize_coefficients: compensating for overflow, qlp_coeff[%u]=%d, lp_coeff[%u]=%f, cmax=%f, precision=%u, shift=%d, q=%f, f(q)=%f\n", i, qlp_coeff[i], i, lp_coeff[i], cmax, precision, *shift, (FLAC__double)lp_coeff[i] / (FLAC__double)(1 << nshift), floor((FLAC__double)lp_coeff[i] / (FLAC__double)(1 << nshift)));#endif				cmax *= 2.0;				goto redo_it;			}		}	}	return 0;}void FLAC__lpc_compute_residual_from_qlp_coefficients(const FLAC__int32 *data, unsigned data_len, const FLAC__int32 qlp_coeff[], unsigned order, int lp_quantization, FLAC__int32 residual[]){#ifdef FLAC__OVERFLOW_DETECT	FLAC__int64 sumo;#endif	unsigned i, j;	FLAC__int32 sum;	const FLAC__int32 *history;#ifdef FLAC__OVERFLOW_DETECT_VERBOSE	fprintf(stderr,"FLAC__lpc_compute_residual_from_qlp_coefficients: data_len=%d, order=%u, lpq=%d",data_len,order,lp_quantization);	for(i=0;i<order;i++)		fprintf(stderr,", q[%u]=%d",i,qlp_coeff[i]);	fprintf(stderr,"\n");#endif	FLAC__ASSERT(order > 0);	for(i = 0; i < data_len; i++) {#ifdef FLAC__OVERFLOW_DETECT		sumo = 0;#endif		sum = 0;		history = data;		for(j = 0; j < order; j++) {			sum += qlp_coeff[j] * (*(--history));#ifdef FLAC__OVERFLOW_DETECT			sumo += (FLAC__int64)qlp_coeff[j] * (FLAC__int64)(*history);#if defined _MSC_VER			if(sumo > 2147483647I64 || sumo < -2147483648I64)				fprintf(stderr,"FLAC__lpc_compute_residual_from_qlp_coefficients: OVERFLOW, i=%u, j=%u, c=%d, d=%d, sumo=%I64d\n",i,j,qlp_coeff[j],*history,sumo);#else			if(sumo > 2147483647ll || sumo < -2147483648ll)				fprintf(stderr,"FLAC__lpc_compute_residual_from_qlp_coefficients: OVERFLOW, i=%u, j=%u, c=%d, d=%d, sumo=%lld\n",i,j,qlp_coeff[j],*history,sumo);#endif#endif		}		*(residual++) = *(data++) - (sum >> lp_quantization);	}	/* Here's a slower but clearer version:	for(i = 0; i < data_len; i++) {		sum = 0;		for(j = 0; j < order; j++)			sum += qlp_coeff[j] * data[i-j-1];		residual[i] = data[i] - (sum >> lp_quantization);	}	*/}void FLAC__lpc_compute_residual_from_qlp_coefficients_wide(const FLAC__int32 *data, unsigned data_len, const FLAC__int32 qlp_coeff[], unsigned order, int lp_quantization, FLAC__int32 residual[]){	unsigned i, j;	FLAC__int64 sum;	const FLAC__int32 *history;#ifdef FLAC__OVERFLOW_DETECT_VERBOSE	fprintf(stderr,"FLAC__lpc_compute_residual_from_qlp_coefficients_wide: data_len=%d, order=%u, lpq=%d",data_len,order,lp_quantization);	for(i=0;i<order;i++)		fprintf(stderr,", q[%u]=%d",i,qlp_coeff[i]);	fprintf(stderr,"\n");#endif	FLAC__ASSERT(order > 0);	for(i = 0; i < data_len; i++) {		sum = 0;		history = data;		for(j = 0; j < order; j++)			sum += (FLAC__int64)qlp_coeff[j] * (FLAC__int64)(*(--history));#ifdef FLAC__OVERFLOW_DETECT		if(FLAC__bitmath_silog2_wide(sum >> lp_quantization) > 32) {			fprintf(stderr,"FLAC__lpc_compute_residual_from_qlp_coefficients_wide: OVERFLOW, i=%u, sum=%lld\n", i, sum >> lp_quantization);			break;		}		if(FLAC__bitmath_silog2_wide((FLAC__int64)(*data) - (sum >> lp_quantization)) > 32) {			fprintf(stderr,"FLAC__lpc_compute_residual_from_qlp_coefficients_wide: OVERFLOW, i=%u, data=%d, sum=%lld, residual=%lld\n", i, *data, sum >> lp_quantization, (FLAC__int64)(*data) - (sum >> lp_quantization));			break;		}#endif		*(residual++) = *(data++) - (FLAC__int32)(sum >> lp_quantization);	}}#endif /* !defined FLAC__INTEGER_ONLY_LIBRARY */void FLAC__lpc_restore_signal(const FLAC__int32 residual[], unsigned data_len, const FLAC__int32 qlp_coeff[], unsigned order, int lp_quantization, FLAC__int32 data[]){#ifdef FLAC__OVERFLOW_DETECT	FLAC__int64 sumo;#endif	unsigned i, j;	FLAC__int32 sum;	const FLAC__int32 *history;#ifdef FLAC__OVERFLOW_DETECT_VERBOSE	fprintf(stderr,"FLAC__lpc_restore_signal: data_len=%d, order=%u, lpq=%d",data_len,order,lp_quantization);	for(i=0;i<order;i++)		fprintf(stderr,", q[%u]=%d",i,qlp_coeff[i]);	fprintf(stderr,"\n");#endif	FLAC__ASSERT(order > 0);	for(i = 0; i < data_len; i++) {#ifdef FLAC__OVERFLOW_DETECT		sumo = 0;#endif		sum = 0;		history = data;		for(j = 0; j < order; j++) {			sum += qlp_coeff[j] * (*(--history));#ifdef FLAC__OVERFLOW_DETECT			sumo += (FLAC__int64)qlp_coeff[j] * (FLAC__int64)(*history);#if defined _MSC_VER			if(sumo > 2147483647I64 || sumo < -2147483648I64)				fprintf(stderr,"FLAC__lpc_restore_signal: OVERFLOW, i=%u, j=%u, c=%d, d=%d, sumo=%I64d\n",i,j,qlp_coeff[j],*history,sumo);#else			if(sumo > 2147483647ll || sumo < -2147483648ll)				fprintf(stderr,"FLAC__lpc_restore_signal: OVERFLOW, i=%u, j=%u, c=%d, d=%d, sumo=%lld\n",i,j,qlp_coeff[j],*history,sumo);#endif#endif		}		*(data++) = *(residual++) + (sum >> lp_quantization);	}	/* Here's a slower but clearer version:	for(i = 0; i < data_len; i++) {		sum = 0;		for(j = 0; j < order; j++)			sum += qlp_coeff[j] * data[i-j-1];		data[i] = residual[i] + (sum >> lp_quantization);	}	*/}void FLAC__lpc_restore_signal_wide(const FLAC__int32 residual[], unsigned data_len, const FLAC__int32 qlp_coeff[], unsigned order, int lp_quantization, FLAC__int32 data[]){	unsigned i, j;	FLAC__int64 sum;	const FLAC__int32 *history;#ifdef FLAC__OVERFLOW_DETECT_VERBOSE	fprintf(stderr,"FLAC__lpc_restore_signal_wide: data_len=%d, order=%u, lpq=%d",data_len,order,lp_quantization);	for(i=0;i<order;i++)		fprintf(stderr,", q[%u]=%d",i,qlp_coeff[i]);	fprintf(stderr,"\n");#endif	FLAC__ASSERT(order > 0);	for(i = 0; i < data_len; i++) {		sum = 0;		history = data;		for(j = 0; j < order; j++)			sum += (FLAC__int64)qlp_coeff[j] * (FLAC__int64)(*(--history));#ifdef FLAC__OVERFLOW_DETECT		if(FLAC__bitmath_silog2_wide(sum >> lp_quantization) > 32) {			fprintf(stderr,"FLAC__lpc_restore_signal_wide: OVERFLOW, i=%u, sum=%lld\n", i, sum >> lp_quantization);			break;		}		if(FLAC__bitmath_silog2_wide((FLAC__int64)(*residual) + (sum >> lp_quantization)) > 32) {			fprintf(stderr,"FLAC__lpc_restore_signal_wide: OVERFLOW, i=%u, residual=%d, sum=%lld, data=%lld\n", i, *residual, sum >> lp_quantization, (FLAC__int64)(*residual) + (sum >> lp_quantization));			break;		}#endif		*(data++) = *(residual++) + (FLAC__int32)(sum >> lp_quantization);	}}#ifndef FLAC__INTEGER_ONLY_LIBRARYFLAC__double FLAC__lpc_compute_expected_bits_per_residual_sample(FLAC__double lpc_error, unsigned total_samples){	FLAC__double error_scale;	FLAC__ASSERT(total_samples > 0);	error_scale = 0.5 * M_LN2 * M_LN2 / (FLAC__double)total_samples;	return FLAC__lpc_compute_expected_bits_per_residual_sample_with_error_scale(lpc_error, error_scale);}FLAC__double FLAC__lpc_compute_expected_bits_per_residual_sample_with_error_scale(FLAC__double lpc_error, FLAC__double error_scale){	if(lpc_error > 0.0) {		FLAC__double bps = (FLAC__double)0.5 * log(error_scale * lpc_error) / M_LN2;		if(bps >= 0.0)			return bps;		else			return 0.0;	}	else if(lpc_error < 0.0) { /* error should not be negative but can happen due to inadequate floating-point resolution */		return 1e32;	}	else {		return 0.0;	}}unsigned FLAC__lpc_compute_best_order(const FLAC__double lpc_error[], unsigned max_order, unsigned total_samples, unsigned bits_per_signal_sample){	unsigned order, best_order;	FLAC__double best_bits, tmp_bits, error_scale;	FLAC__ASSERT(max_order > 0);	FLAC__ASSERT(total_samples > 0);	error_scale = 0.5 * M_LN2 * M_LN2 / (FLAC__double)total_samples;	best_order = 0;	best_bits = FLAC__lpc_compute_expected_bits_per_residual_sample_with_error_scale(lpc_error[0], error_scale) * (FLAC__double)total_samples;	for(order = 1; order < max_order; order++) {		tmp_bits = FLAC__lpc_compute_expected_bits_per_residual_sample_with_error_scale(lpc_error[order], error_scale) * (FLAC__double)(total_samples - order) + (FLAC__double)(order * bits_per_signal_sample);		if(tmp_bits < best_bits) {			best_order = order;			best_bits = tmp_bits;		}	}	return best_order+1; /* +1 since index of lpc_error[] is order-1 */}#endif /* !defined FLAC__INTEGER_ONLY_LIBRARY */

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -