⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 timeandworksimple.html

📁 aptitude book by r s aggarwal
💻 HTML
字号:
<html><table height="500" width="1000" border="2"><TR height="5" width="1000"><strong><center><marquee><font color="Green"><h1>APTITUDE</h1></center></strong></font></TR></marquee><TR><TD align="left" width="200" valign="top"><table><TR><a href="numbers.html"><strong>Numbers</strong></a></TR><br><TR><a href="hcf.html"><strong>H.C.F and L.C.M</strong></a></TR><br><TR><a href="dec.html" ><strong>Decimal Fractions</strong></a></TR><br><TR><a href="simplification.html"><strong>Simplification</strong></a></TR><br><TR><a href="squareandcuberoot.html" ><strong>Square and Cube roots</strong></a></TR><br><TR><a href="average.html" ><strong>Average</strong></a></TR><br><TR><a href="pnumbers.html" ><strong>Problems on Numbers</strong></a></TR><br><TR><a href="problemsonages.html"><strong>Problems on Ages</strong></a></TR><br><TR><a href="surdsandindices.html"><strong>Surds and Indices</strong></a></TR><br><TR><a href="percent.html" ><strong>Percentage</strong></a></TR><br><TR><a href="profitandloss.html" ><strong>Profit and Loss</strong></a></TR><br><TR><a href="ratioandproportion.html" ><strong>Ratio And Proportions</strong></a></TR><br><TR><a href="partnership.html"><strong>Partnership</strong></a></TR><br><TR><a href="chainrule1.html"><strong>Chain Rule</strong></a></TR><br><TR><a href="timeandwork.html" ><strong>Time and Work</strong></a></TR><br><TR><a href="pipesandcisterns.html" ><strong>Pipes and Cisterns</strong></a></TR><br><TR><a href="timeanddistance.html"><strong>Time and Distance</strong></a></TR><br><TR><a href="trains.html" ><strong>Trains</strong></a></TR><br><TR><a href="boats.html"><strong>Boats and Streams</strong></a></TR><br><TR><a href="alligation.html"><strong>Alligation or Mixture </strong></a></TR><br><TR><a href="simple.html" ><strong>Simple Interest</strong></a></TR><br><TR><a href="CI.html"><strong>Compound Interest</strong></a></TR><br><TR><a href=""><strong>Logorithms</strong></a></TR><br><TR><a href="areas.html" ><strong>Areas</strong></a></TR><br><TR><a href="volume.html"><strong>Volume and Surface area</strong></a></TR><br><TR><a href="races.html" ><strong>Races and Games of Skill</strong></a></TR><br><TR><a href="calendar.html" ><strong>Calendar</strong></a></TR><br><TR><a href="clocks.html" ><strong>Clocks</strong></a></TR><br><TR><a href="" ><strong>Stocks ans Shares</strong></a></TR><br><TR><a href="true.html" ><strong>True Discount</strong></a></TR><br><TR><a href="banker1.html" ><strong>Bankers Discount</strong></a></TR><br><TR><a href="oddseries.html"><strong>Oddmanout and Series</strong></a></TR><br><TR><a href=""><strong>Data Interpretation</strong></a></TR><br><TR><a href="probability.html"><strong>probability</strong></a></TR><br><TR><a href="percom1.html"  ><strong>Permutations and Combinations</strong></a></TR><br><TR><a href="pinkivijji_puzzles.html" ><strong>Puzzles</strong></a></TR></table></TD><TD valign="top"><a href="timeandwork.html" target="right"><strong>BACK</strong></a><br><br><font size="5"><center><b><u>SIMPLE PROBLEMS</u></b></center></font><font size="4"><PRE>1)If 9 men working 6 hours a day can do a work in 88 days. Then 6 men working 8 hours a day can do it in how many days?Sol:            From the above formula i.e (m1*t1/w1)=(m2*t2/w2)                 so (9*6*88/1)=(6*8*d/1)                on solving, d=99 days.2)If 34 men completed 2/5th of a work in 8 days working 9 hours a day.How many more man should be engaged to finish the rest of the work in 6 days working 9 hours a day?Sol:           From the above formula i.e (m1*t1/w1)=(m2*t2/w2)                so, (34*8*9/(2/5))=(x*6*9/(3/5))               so x=136 men                number of men to be added to finish the work=136-34=102 men 3)If 5 women or 8 girls can do a work in 84 days. In how many days can 10 womenand 5 girls can do the same work?Sol:         Given that 5 women is equal to 8 girls to complete a work             so, 10 women=16 girls.             Therefore 10women +5girls=16girls+5girls=21girls.             8 girls can do a work in 84 days             then 21 girls ---------------?             answer= (8*84/21)=32days.             Therefore 10 women and 5 girls can a work in 32days4)Worker A takes 8 hours to do a job. Worker B takes 10hours to do the same job. How long it take both A & B, working together but independently, to dothe same job?Sol:         A's one hour work=1/8.             B's one hour work=1/10             (A+B)'s one hour work=1/8+1/10 =9/40             Both A & B can finish the work in 40/9 days 5)A can finish a work in 18 days and B can do the same work in half the time taken by A. Then, working together, what part of the same work they can finishin a day?Sol:    Given that B alone can complete the same work in days=half the time taken                                                                   by A=9days             A's one day work=1/18             B's one day work=1/9             (A+B)'s one day work=1/18+1/9=1/66)A is twice as good a workman as B and together they finish a piece of work in 18 days.In how many days will A alone finish the work.Sol:          if A takes x days to do a work then              B takes 2x days to do the same work            =>1/x+1/2x=1/18            =>3/2x=1/18            =>x=27 days.              Hence, A alone can finish the work in 27 days.7)A can do a certain work in 12 days. B is 60% more efficient than A. How many days does B alone take to do the same job? Sol:          Ratio of time taken by A&B=160:100 =8:5              Suppose B alone takes x days to do the job.              Then, 8:5::12:x           => 8x=5*12           => x=15/2 days.8)A can do a piece of work n 7 days of 9 hours each and B alone can do it in 6 days of 7 hours each. How long will they take to do it working together 8 2/5 hours a day?Sol:          A can complete the work in (7*9)=63 days              B can complete the work in (6*7)=42 days           => A's one hour's work=1/63 and              B's one hour work=1/42              (A+B)'s one hour work=1/63+1/42=5/126              Therefore, Both can finish the work in 126/5 hours.              Number of days of 8 2/5 hours each=(126*5/(5*42))=3days9)A takes twice as much time as B or thrice as much time to finish a piece of work. Working together they can finish the work in 2 days. B can do the work alone in ? Sol:     Suppose A,B and C take x,x/2 and x/3 hours respectively finish the work          then 1/x+2/x+3/x=1/2          => 6/x=1/2          =>x=12          So, B takes 6 hours to finish the work.10)X can do 录 of a work in 10 days, Y can do 40% of work in 40 days and Z can do 1/3 of work in 13 days. Who will complete the work first?Sol:         Whole work will be done by X in 10*4=40 days.              Whole work will be done by Y in (40*100/40)=100 days.             Whole work will be done by Z in (13*3)=39 days             Therefore,Z will complete the work first.<font size="3"><a href="timeandwork.html" target="right"><strong>BACK</strong></a></font></PRE></font></TD></TR></table></HTML>

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -