⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 denoise_tree.m

📁 本程序针对一维的数据分析,并对其建立合适的马尔可夫模型
💻 M
字号:
% denoise_tree.m%% 1-D% Denoising algorithm for coarse to fine hmt model.% Usuage : wp = denoise_tree(w, ES, POS, MU, SI, nsi)% w - noisy data% ES, POS, MU, SI - hmt model parameters% nsi - noise variance (optional).  default = MAD/.67%% Written by : Justin Romberg% Created : 1/18/99function wp = denoise_tree(w, ES, POS, MU, SI, nsi)N = length(w);L = size(MU,2);M = size(MU,1);startlevel = 1;if (nargin < 6)  % median(abs(tmp(:)))/.67, tmp should be finest scale of w  error('Enter noise varaince (for now)');end% adjust varianceSIo = SI-nsi;inds = find(SIo<0);SIo(inds) = zeros(size(inds));% get the posterior likelihood of each state[PS,a,b,bt,LK] = updown_tree(w, ES, POS, MU, SI, 1);% find conditional meanw2 = repmat(w, [M 1]);wp = zeros(size(w));wp(1) = w(1);for ll = 1:L  inds1 = 2^(ll-1)+1;  inds2 = 2^ll;  if (ll < startlevel)    wp(inds1:inds2) = w(inds1:inds2);  else    sf = repmat(SIo(:,ll)./(SIo(:,ll) + nsi), [1 inds2-inds1+1]);    wp(inds1:inds2) = sum(PS(:,inds1:inds2).*w2(:,inds1:inds2).*sf, 1);  endend

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -