📄 sleep.c
字号:
/* sleep.c - create a /proc file, and if several * processes try to open it at the same time, put all * but one to sleep *//* Copyright (C) 1998-99 by Ori Pomerantz *//* The necessary header files *//* Standard in kernel modules */#include <linux/kernel.h> /* We're doing kernel work */#include <linux/module.h> /* Specifically, a module *//* Deal with CONFIG_MODVERSIONS */#if CONFIG_MODVERSIONS==1#define MODVERSIONS#include <linux/modversions.h>#endif /* Necessary because we use proc fs */#include <linux/proc_fs.h>/* For putting processes to sleep and waking them up */#include <linux/sched.h>#include <linux/wrapper.h>/* In 2.2.3 /usr/include/linux/version.h includes a * macro for this, but 2.0.35 doesn't - so I add it * here if necessary. */#ifndef KERNEL_VERSION#define KERNEL_VERSION(a,b,c) ((a)*65536+(b)*256+(c))#endif#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,2,0)#include <asm/uaccess.h> /* for get_user and put_user */#endif/* The module's file functions ********************** *//* Here we keep the last message received, to prove * that we can process our input */#define MESSAGE_LENGTH 80static char Message[MESSAGE_LENGTH];/* Since we use the file operations struct, we can't use * the special proc output provisions - we have to use * a standard read function, which is this function */#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,2,0)static ssize_t module_output( struct file *file, /* The file read */ char *buf, /* The buffer to put data to (in the * user segment) */ size_t len, /* The length of the buffer */ loff_t *offset) /* Offset in the file - ignore */#elsestatic int module_output( struct inode *inode, /* The inode read */ struct file *file, /* The file read */ char *buf, /* The buffer to put data to (in the * user segment) */ int len) /* The length of the buffer */#endif{ static int finished = 0; int i; char message[MESSAGE_LENGTH+30]; /* Return 0 to signify end of file - that we have * nothing more to say at this point. */ if (finished) { finished = 0; return 0; } /* If you don't understand this by now, you're * hopeless as a kernel programmer. */ sprintf(message, "Last input:%s\n", Message); for(i=0; i<len && message[i]; i++) put_user(message[i], buf+i); finished = 1; return i; /* Return the number of bytes "read" */}/* This function receives input from the user when * the user writes to the /proc file. */#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,2,0)static ssize_t module_input( struct file *file, /* The file itself */ const char *buf, /* The buffer with input */ size_t length, /* The buffer's length */ loff_t *offset) /* offset to file - ignore */#elsestatic int module_input( struct inode *inode, /* The file's inode */ struct file *file, /* The file itself */ const char *buf, /* The buffer with the input */ int length) /* The buffer's length */#endif{ int i; /* Put the input into Message, where module_output * will later be able to use it */ for(i=0; i<MESSAGE_LENGTH-1 && i<length; i++)#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,2,0) get_user(Message[i], buf+i);#else Message[i] = get_user(buf+i);#endif/* we want a standard, zero terminated string */ Message[i] = '\0'; /* We need to return the number of input * characters used */ return i;}/* 1 if the file is currently open by somebody */int Already_Open = 0;/* Queue of processes who want our file */static struct wait_queue *WaitQ = NULL;/* Called when the /proc file is opened */static int module_open(struct inode *inode, struct file *file){ /* If the file's flags include O_NONBLOCK, it means * the process doesn't want to wait for the file. * In this case, if the file is already open, we * should fail with -EAGAIN, meaning "you'll have to * try again", instead of blocking a process which * would rather stay awake. */ if ((file->f_flags & O_NONBLOCK) && Already_Open) return -EAGAIN; /* This is the correct place for MOD_INC_USE_COUNT * because if a process is in the loop, which is * within the kernel module, the kernel module must * not be removed. */ MOD_INC_USE_COUNT; /* If the file is already open, wait until it isn't */ while (Already_Open) {#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,2,0) int i, is_sig=0;#endif /* This function puts the current process, * including any system calls, such as us, to sleep. * Execution will be resumed right after the function * call, either because somebody called * wake_up(&WaitQ) (only module_close does that, * when the file is closed) or when a signal, such * as Ctrl-C, is sent to the process */ module_interruptible_sleep_on(&WaitQ); /* If we woke up because we got a signal we're not * blocking, return -EINTR (fail the system call). * This allows processes to be killed or stopped. *//* * Emmanuel Papirakis: * * This is a little update to work with 2.2.*. Signals * now are contained in two words (64 bits) and are * stored in a structure that contains an array of two * unsigned longs. We now have to make 2 checks in our if. * * Ori Pomerantz: * * Nobody promised me they'll never use more than 64 * bits, or that this book won't be used for a version * of Linux with a word size of 16 bits. This code * would work in any case. */ #if LINUX_VERSION_CODE >= KERNEL_VERSION(2,2,0) for(i=0; i<_NSIG_WORDS && !is_sig; i++) is_sig = current->signal.sig[i] & ~current->blocked.sig[i]; if (is_sig) {#else if (current->signal & ~current->blocked) {#endif /* It's important to put MOD_DEC_USE_COUNT here, * because for processes where the open is * interrupted there will never be a corresponding * close. If we don't decrement the usage count * here, we will be left with a positive usage * count which we'll have no way to bring down to * zero, giving us an immortal module, which can * only be killed by rebooting the machine. */ MOD_DEC_USE_COUNT; return -EINTR; } } /* If we got here, Already_Open must be zero */ /* Open the file */ Already_Open = 1; return 0; /* Allow the access */}/* Called when the /proc file is closed */#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,2,0)int module_close(struct inode *inode, struct file *file)#elsevoid module_close(struct inode *inode, struct file *file)#endif{ /* Set Already_Open to zero, so one of the processes * in the WaitQ will be able to set Already_Open back * to one and to open the file. All the other processes * will be called when Already_Open is back to one, so * they'll go back to sleep. */ Already_Open = 0; /* Wake up all the processes in WaitQ, so if anybody * is waiting for the file, they can have it. */ module_wake_up(&WaitQ); MOD_DEC_USE_COUNT;#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,2,0) return 0; /* success */#endif}/* This function decides whether to allow an operation * (return zero) or not allow it (return a non-zero * which indicates why it is not allowed). * * The operation can be one of the following values: * 0 - Execute (run the "file" - meaningless in our case) * 2 - Write (input to the kernel module) * 4 - Read (output from the kernel module) * * This is the real function that checks file * permissions. The permissions returned by ls -l are * for referece only, and can be overridden here. */static int module_permission(struct inode *inode, int op){ /* We allow everybody to read from our module, but * only root (uid 0) may write to it */ if (op == 4 || (op == 2 && current->euid == 0)) return 0; /* If it's anything else, access is denied */ return -EACCES;}/* Structures to register as the /proc file, with * pointers to all the relevant functions. *********** *//* File operations for our proc file. This is where * we place pointers to all the functions called when * somebody tries to do something to our file. NULL * means we don't want to deal with something. */static struct file_operations File_Ops_4_Our_Proc_File = { NULL, /* lseek */ module_output, /* "read" from the file */ module_input, /* "write" to the file */ NULL, /* readdir */ NULL, /* select */ NULL, /* ioctl */ NULL, /* mmap */ module_open,/* called when the /proc file is opened */#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,2,0) NULL, /* flush */#endif module_close /* called when it's classed */ };/* Inode operations for our proc file. We need it so * we'll have somewhere to specify the file operations * structure we want to use, and the function we use for * permissions. It's also possible to specify functions * to be called for anything else which could be done to an * inode (although we don't bother, we just put NULL). */static struct inode_operations Inode_Ops_4_Our_Proc_File = { &File_Ops_4_Our_Proc_File, NULL, /* create */ NULL, /* lookup */ NULL, /* link */ NULL, /* unlink */ NULL, /* symlink */ NULL, /* mkdir */ NULL, /* rmdir */ NULL, /* mknod */ NULL, /* rename */ NULL, /* readlink */ NULL, /* follow_link */ NULL, /* readpage */ NULL, /* writepage */ NULL, /* bmap */ NULL, /* truncate */ module_permission /* check for permissions */ };/* Directory entry */static struct proc_dir_entry Our_Proc_File = { 0, /* Inode number - ignore, it will be filled by * proc_register[_dynamic] */ 5, /* Length of the file name */ "sleep", /* The file name */ S_IFREG | S_IRUGO | S_IWUSR, /* File mode - this is a regular file which * can be read by its owner, its group, and everybody * else. Also, its owner can write to it. * * Actually, this field is just for reference, it's * module_permission that does the actual check. It * could use this field, but in our implementation it * doesn't, for simplicity. */ 1, /* Number of links (directories where the * file is referenced) */ 0, 0, /* The uid and gid for the file - we give * it to root */ 80, /* The size of the file reported by ls. */ &Inode_Ops_4_Our_Proc_File, /* A pointer to the inode structure for * the file, if we need it. In our case we * do, because we need a write function. */ NULL /* The read function for the file. * Irrelevant, because we put it * in the inode structure above */ }; /* Module initialization and cleanup **************** *//* Initialize the module - register the proc file */int init_module(){ /* Success if proc_register_dynamic is a success, * failure otherwise */#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,2,0) return proc_register(&proc_root, &Our_Proc_File);#else return proc_register_dynamic(&proc_root, &Our_Proc_File);#endif /* proc_root is the root directory for the proc * fs (/proc). This is where we want our file to be * located. */}/* Cleanup - unregister our file from /proc. This could * get dangerous if there are still processes waiting in * WaitQ, because they are inside our open function, * which will get unloaded. I'll explain how to avoid * removal of a kernel module in such a case in * chapter 10. */void cleanup_module(){ proc_unregister(&proc_root, Our_Proc_File.low_ino);}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -