⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 set_fields.m

📁 基于贝叶斯网络的源程序
💻 M
字号:
function CPD = set_fields(CPD, varargin)% SET_PARAMS Set the parameters (fields) for a gaussian_CPD object% CPD = set_params(CPD, name/value pairs)%% The following optional arguments can be specified in the form of name/value pairs:%% mean       - mu(:,i) is the mean given Q=i% cov        - Sigma(:,:,i) is the covariance given Q=i % weights    - W(:,:,i) is the regression matrix given Q=i % cov_type   - if 'diag', Sigma(:,:,i) is diagonal % tied_cov   - if 1, we constrain Sigma(:,:,i) to be the same for all i% clamp_mean - if 1, we do not adjust mu(:,i) during learning % clamp_cov  - if 1, we do not adjust Sigma(:,:,i) during learning % clamp_weights - if 1, we do not adjust W(:,:,i) during learning% clamp      - if 1, we do not adjust any params% cov_prior_weight - weight given to I prior for estimating Sigma% cov_prior_entropic - if 1, we also use an entropic prior for Sigma [0]%% e.g., CPD = set_params(CPD, 'mean', [0;0])args = varargin;nargs = length(args);for i=1:2:nargs  switch args{i},   case 'mean',        CPD.mean = args{i+1};    case 'cov',         CPD.cov = args{i+1};    case 'weights',     CPD.weights = args{i+1};    case 'cov_type',    CPD.cov_type = args{i+1};    %case 'tied_cov',    CPD.tied_cov = strcmp(args{i+1}, 'yes');   case 'tied_cov',    CPD.tied_cov = args{i+1};   case 'clamp_mean',  CPD.clamped_mean = args{i+1};   case 'clamp_cov',   CPD.clamped_cov = args{i+1};   case 'clamp_weights',  CPD.clamped_weights = args{i+1};   case 'clamp',  clamp = args{i+1};    CPD.clamped_mean = clamp;    CPD.clamped_cov = clamp;    CPD.clamped_weights = clamp;   case 'cov_prior_weight',  CPD.cov_prior_weight = args{i+1};   case 'cov_prior_entropic',  CPD.cov_prior_entropic = args{i+1};   otherwise,      error(['invalid argument name ' args{i}]);  endend

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -