📄 set_fields.m
字号:
function CPD = set_fields(CPD, varargin)% SET_PARAMS Set the parameters (fields) for a gaussian_CPD object% CPD = set_params(CPD, name/value pairs)%% The following optional arguments can be specified in the form of name/value pairs:%% mean - mu(:,i) is the mean given Q=i% cov - Sigma(:,:,i) is the covariance given Q=i % weights - W(:,:,i) is the regression matrix given Q=i % cov_type - if 'diag', Sigma(:,:,i) is diagonal % tied_cov - if 1, we constrain Sigma(:,:,i) to be the same for all i% clamp_mean - if 1, we do not adjust mu(:,i) during learning % clamp_cov - if 1, we do not adjust Sigma(:,:,i) during learning % clamp_weights - if 1, we do not adjust W(:,:,i) during learning% clamp - if 1, we do not adjust any params% cov_prior_weight - weight given to I prior for estimating Sigma% cov_prior_entropic - if 1, we also use an entropic prior for Sigma [0]%% e.g., CPD = set_params(CPD, 'mean', [0;0])args = varargin;nargs = length(args);for i=1:2:nargs switch args{i}, case 'mean', CPD.mean = args{i+1}; case 'cov', CPD.cov = args{i+1}; case 'weights', CPD.weights = args{i+1}; case 'cov_type', CPD.cov_type = args{i+1}; %case 'tied_cov', CPD.tied_cov = strcmp(args{i+1}, 'yes'); case 'tied_cov', CPD.tied_cov = args{i+1}; case 'clamp_mean', CPD.clamped_mean = args{i+1}; case 'clamp_cov', CPD.clamped_cov = args{i+1}; case 'clamp_weights', CPD.clamped_weights = args{i+1}; case 'clamp', clamp = args{i+1}; CPD.clamped_mean = clamp; CPD.clamped_cov = clamp; CPD.clamped_weights = clamp; case 'cov_prior_weight', CPD.cov_prior_weight = args{i+1}; case 'cov_prior_entropic', CPD.cov_prior_entropic = args{i+1}; otherwise, error(['invalid argument name ' args{i}]); endend
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -