📄 kalman1.m
字号:
% Make a linear dynamical system% X1 -> X2% | | % v v% Y1 Y2 intra = zeros(2);intra(1,2) = 1;inter = zeros(2);inter(1,1) = 1;n = 2;X = 2; % size of hidden stateY = 2; % size of observable statens = [X Y];dnodes = [];onodes = [2];eclass1 = [1 2];eclass2 = [3 2];bnet = mk_dbn(intra, inter, ns, 'discrete', dnodes, 'eclass1', eclass1, 'eclass2', eclass2, ... 'observed', onodes);x0 = rand(X,1);V0 = eye(X);C0 = rand(Y,X);R0 = eye(Y);A0 = rand(X,X);Q0 = eye(X);bnet.CPD{1} = gaussian_CPD(bnet, 1, 'mean', x0, 'cov', V0, 'cov_prior_weight', 0);bnet.CPD{2} = gaussian_CPD(bnet, 2, 'mean', zeros(Y,1), 'cov', R0, 'weights', C0, ... 'clamp_mean', 1, 'cov_prior_weight', 0);bnet.CPD{3} = gaussian_CPD(bnet, 3, 'mean', zeros(X,1), 'cov', Q0, 'weights', A0, ... 'clamp_mean', 1, 'cov_prior_weight', 0);T = 5; % fixed length sequencesclear engine;engine{1} = kalman_inf_engine(bnet);engine{2} = jtree_unrolled_dbn_inf_engine(bnet, T);engine{3} = jtree_dbn_inf_engine(bnet);N = length(engine);% inferenceev = sample_dbn(bnet, T);evidence = cell(n,T);evidence(onodes,:) = ev(onodes, :);t = 1;query = [1 3];m = cell(1, N);ll = zeros(1, N);for i=1:N [engine{i}, ll(i)] = enter_evidence(engine{i}, evidence); m{i} = marginal_nodes(engine{i}, query, t);end% compare all engines to engine{1}for i=2:N assert(approxeq(m{1}.mu, m{i}.mu)); assert(approxeq(m{1}.Sigma, m{i}.Sigma)); assert(approxeq(ll(1), ll(i)));endif 0for i=2:N approxeq(m{1}.mu, m{i}.mu) approxeq(m{1}.Sigma, m{i}.Sigma) approxeq(ll(1), ll(i))endend% learningncases = 5;cases = cell(1, ncases);for i=1:ncases ev = sample_dbn(bnet, T); cases{i} = cell(n,T); cases{i}(onodes,:) = ev(onodes, :);endmax_iter = 2;bnet2 = cell(1,N);LLtrace = cell(1,N);for i=1:N [bnet2{i}, LLtrace{i}] = learn_params_dbn_em(engine{i}, cases, 'max_iter', max_iter);endfor i=1:N temp = bnet2{i}; for e=1:3 CPD{i,e} = struct(temp.CPD{e}); endendfor i=2:N assert(approxeq(LLtrace{i}, LLtrace{1})); for e=1:3 assert(approxeq(CPD{i,e}.mean, CPD{1,e}.mean)); assert(approxeq(CPD{i,e}.cov, CPD{1,e}.cov)); assert(approxeq(CPD{i,e}.weights, CPD{1,e}.weights)); endend% Compare to KF toolboxdata = zeros(Y, T, ncases);for i=1:ncases data(:,:,i) = cell2num(cases{i}(onodes, :));end [A2, C2, Q2, R2, x2, V2, LL2trace] = learn_kalman(data, A0, C0, Q0, R0, x0, V0, max_iter);e = 1;assert(approxeq(x2, CPD{e,1}.mean))assert(approxeq(V2, CPD{e,1}.cov))assert(approxeq(C2, CPD{e,2}.weights))assert(approxeq(R2, CPD{e,2}.cov));assert(approxeq(A2, CPD{e,3}.weights))assert(approxeq(Q2, CPD{e,3}.cov));assert(approxeq(LL2trace, LLtrace{1}))
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -