⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 kalman1.m

📁 基于贝叶斯网络的源程序
💻 M
字号:
% Make a linear dynamical system%   X1 -> X2%   |     | %   v     v%   Y1    Y2 intra = zeros(2);intra(1,2) = 1;inter = zeros(2);inter(1,1) = 1;n = 2;X = 2; % size of hidden stateY = 2; % size of observable statens = [X Y];bnet = mk_dbn(intra, inter, ns, 'discrete', [], 'observed', 2);x0 = rand(X,1);V0 = eye(X);C0 = rand(Y,X);R0 = eye(Y);A0 = rand(X,X);Q0 = eye(X);bnet.CPD{1} = gaussian_CPD(bnet, 1, 'mean', x0, 'cov', V0, 'cov_prior_weight', 0);bnet.CPD{2} = gaussian_CPD(bnet, 2, 'mean', zeros(Y,1), 'cov', R0, 'weights', C0, ...			   'clamp_mean', 1, 'cov_prior_weight', 0);bnet.CPD{3} = gaussian_CPD(bnet, 3, 'mean', zeros(X,1), 'cov', Q0, 'weights', A0, ...			   'clamp_mean', 1, 'cov_prior_weight', 0);T = 5; % fixed length sequencesclear engine;engine{1} = kalman_inf_engine(bnet);engine{2} = jtree_unrolled_dbn_inf_engine(bnet, T);engine{3} = jtree_dbn_inf_engine(bnet);engine{end+1} = smoother_engine(jtree_2TBN_inf_engine(bnet));N = length(engine);inf_time = cmp_inference_dbn(bnet, engine, T);ncases = 2;max_iter = 2;[learning_time, CPD, LL, cases] = cmp_learning_dbn(bnet, engine, T, 'ncases', ncases, 'max_iter', max_iter);% Compare to KF toolboxdata = zeros(Y, T, ncases);for i=1:ncases  data(:,:,i) = cell2num(cases{i}(onodes, :));end   [A2, C2, Q2, R2, x2, V2, LL2trace] =  learn_kalman(data, A0, C0, Q0, R0, x0, V0, max_iter);e = 1;assert(approxeq(x2, CPD{e,1}.mean))assert(approxeq(V2, CPD{e,1}.cov))assert(approxeq(C2, CPD{e,2}.weights))assert(approxeq(R2, CPD{e,2}.cov));assert(approxeq(A2, CPD{e,3}.weights))assert(approxeq(Q2, CPD{e,3}.cov));assert(approxeq(LL2trace, LL{1}))

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -