📄 mpe2.m
字号:
% Computing most probable explanation.% If you don't break ties consistently, loopy can give wrong mpe% even though the graph has no cycles, and even though the max-marginals are the same.% This example was contributed by Wentau Yih <wtyih@yahoo.com> 29 Jan 02.% define loop-free graph structure (all edges point down)%% Xe1 Xe2% | |% E1 E2% \ /% R1% |% Xr1N = 6;dag = zeros(N,N);Xe1 = 1; Xe2 = 2; E1 = 3; E2 = 4; R1 = 5; Xr1 = 6;dag(Xe1, E1) = 1;dag(Xe2, E2) = 1;dag([E1 E2], R1) = 1;dag(R1, Xr1) = 1;node_sizes = [ 1 1 2 2 2 1 ];% create BNbnet = mk_bnet(dag, node_sizes, 'observed', [Xe1 Xe2 Xr1]);% fill in CPTbnet.CPD{Xe1} = tabular_CPD(bnet, Xe1, [1]);bnet.CPD{Xe2} = tabular_CPD(bnet, Xe2, [1]);bnet.CPD{E1} = tabular_CPD(bnet, E1, [0.2 0.8]);bnet.CPD{E2} = tabular_CPD(bnet, E2, [0.3 0.7]);bnet.CPD{R1} = tabular_CPD(bnet, R1, [1 1 1 0.8 0 0 0 0.2]);bnet.CPD{Xr1} = tabular_CPD(bnet, Xr1, [0.15 0.85]);clear engine;engine{1} = belprop_inf_engine(bnet);engine{2} = jtree_inf_engine(bnet);engine{3} = global_joint_inf_engine(bnet);engine{4} = var_elim_inf_engine(bnet);evidence = cell(1,N);evidence{Xe1} = 1; evidence{Xe2} = 1; evidence{Xr1} = 1;mpe = find_mpe(engine{1}, evidence, 'break_ties', 0) % gives wrong resultsmpe = find_mpe(engine{1}, evidence)for i=2:4 mpe = find_mpe(engine{i}, evidence)end
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -