⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 mk_hmm_bnet.m

📁 基于贝叶斯网络的源程序
💻 M
字号:
function [bnet, onodes] = mk_hmm_bnet(T, Q, O, cts_obs, param_tying)% MK_HMM_BNET Make a (static( bnet to represent a hidden Markov model% [bnet, onodes] = mk_hmm_bnet(T, Q, O, cts_obs, param_tying)%% T = num time slices% Q = num hidden states% O = size of the observed node (num discrete values or length of vector)% cts_obs - 1 means the observed node is a continuous-valued vector, 0 means it's discrete% param_tying - 1 means we create 3 CPDs, 0 means we create 1 CPD per nodeN = 2*T;dag = zeros(N);for i=1:T-1  dag(i,i+1)=1;endonodes = T+1:N;for i=1:T  dag(i, onodes(i)) = 1;endif cts_obs  dnodes = 1:T;else  dnodes = 1:N;endns = [Q*ones(1,T) O*ones(1,T)];if param_tying  eclass = [1 2*ones(1,T-1) 3*ones(1,T)];else  eclass = 1:N;endbnet = mk_bnet(dag, ns, dnodes, eclass);hnodes = mysetdiff(1:N, onodes);if ~param_tying  for i=hnodes(:)'    bnet.CPD{i} = tabular_CPD(bnet, i);  end  if cts_obs    for i=onodes(:)'      bnet.CPD{i} = gaussian_CPD(bnet, i);    end  else    for i=onodes(:)'      bnet.CPD{i} = tabular_CPD(bnet, i);    end  endelse  bnet.CPD{1} = tabular_CPD(bnet, 1);  bnet.CPD{2} = tabular_CPD(bnet, 2);  if cts_obs    bnet.CPD{3} = gaussian_CPD(bnet, 3);  else    bnet.CPD{3} = tabular_CPD(bnet, 3);  endend

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -