⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 t_vuf.m

📁 我确实认为这个程序还是非常实用的
💻 M
字号:
function [v,u,f]=t_vuf(ltype,ctime,ju,lat);
% T_VUF Computes nodal modulation corrections.
% [V,U,F]=T_VUF(TYPE,DATE,JU,LAT) returns the astronomical phase V, the 
% nodal phase modulation U, and the nodal amplitude correction F at
% a decimal date DATE for the components specified by index JU 
% at a latitude LAT.
%
% TYPE is either 'full' for the 18.6 year set of constitunets, or 'nodal'
% for the 1-year set with satellite modulations.
%
% If LAT is not specified, then the Greenwich phase V is computed with
% U=0 and F=1. 
%
% Note that V and U are in 'cycles', not degrees or radians (i.e.,
% multiply by 360 to get degrees).
%
% If LAT is set to NaN, then the nodal corrections are computed for all
% satellites that do *not* have a "latitude-dependent" correction 
% factor. This is for compatibility with the ways things are done in
% the xtide package. (The latitude-dependent corrections were zeroed
% out there partly because it was convenient, but this was rationalized
% by saying that since the forcing of tides can occur at latitudes
% other than where they are observed, the idea that observations have 
% the equilibrium latitude-dependence is possibly bogus anyway).

% R. Pawlowicz 11/8/99
%               1/5/00 - Changed to allow for no LAT setting.
%              11/8/00 - Added the LAT=NaN option.
%              10/02/03 - Suuport for 18-year (full) constituent set.
% Version 1.2
 
% Get all the info about constituents.

% Calculate astronomical arguments at mid-point of data time series.
[astro,ader]=t_astron(ctime);

if strcmp(ltype,'full'),

  [const]=t_get18consts(ctime);

  % Phase relative to Greenwich (in units of cycles).
  v=rem( const.doodson*astro+const.semi, 1);

  v=v(ju);
  u=zeros(size(v));
  f=ones(size(v));

else 

  [const,sat,shallow]=t_getconsts(ctime);

  % Phase relative to Greenwich (in units of cycles).
  % (This only returns values when we have doodson#s, i.e., not for the 
  % shallow water components, but these will be computed later.)
  v=rem( const.doodson*astro+const.semi, 1);

  if nargin==4, % If we have a latitude, get nodal corrections.

    % Apparently the second-order terms in the tidal potential go to zero
    % at the equator, but the third-order terms do not. Hence when trying
    % to infer the third-order terms from the second-order terms, the 
    % nodal correction factors blow up. In order to prevent this, it is 
    % assumed that the equatorial forcing is due to second-order forcing 
    % OFF the equator, from about the 5 degree location. Latitudes are 
    % hence (somewhat arbitrarily) forced to be no closer than 5 deg to 
    % the equator, as per note in Foreman.

    if finite(lat) & (abs(lat)<5); lat=sign(lat).*5; end

    slat=sin(pi.*lat./180);
    % Satellite amplitude ratio adjustment for latitude. 

    rr=sat.amprat;           % no amplitude correction

    if finite(lat),
      j=find(sat.ilatfac==1); % latitude correction for diurnal constituents
      rr(j)=rr(j).*0.36309.*(1.0-5.0.*slat.*slat)./slat;

      j=find(sat.ilatfac==2); % latitude correction for semi-diurnal constituents
      rr(j)=rr(j).*2.59808.*slat;
    else 
      rr(sat.ilatfac>0)=0;
    end;

    % Calculate nodal amplitude and phase corrections.

    uu=rem( sat.deldood*astro(4:6)+sat.phcorr, 1);

    %%uu=uudbl-round(uudbl);  <_ I think this was wrong. The original
    %                         FORTRAN code is:  IUU=UUDBL
    %                                           UU=UUDBL-IUU
    %                         which is truncation.        


    % Sum up all of the satellite factors for all satellites.

    nsat=length(sat.iconst);
    nfreq=length(const.isat);

    fsum=1+sum(sparse([1:nsat],sat.iconst,rr.*exp(i*2*pi*uu),nsat,nfreq)).';

    f=abs(fsum);
    u=angle(fsum)./(2.*pi);

    % Compute amplitude and phase corrections for shallow water constituents. 

    for k=find(finite(const.ishallow))',
      ik=const.ishallow(k)+[0:const.nshallow(k)-1];
      f(k)=prod(f(shallow.iname(ik)).^abs(shallow.coef(ik)));
      u(k)=sum( u(shallow.iname(ik)).*shallow.coef(ik) );
      v(k)=sum( v(shallow.iname(ik)).*shallow.coef(ik) );
    end;

    f=f(ju);
    u=u(ju);
    v=v(ju);

  else % Astronomical arguments only, so nodal corrections.

    % Compute phases for shallow water constituents.
    for k=find(finite(const.ishallow))',
      ik=const.ishallow(k)+[0:const.nshallow(k)-1];
      v(k)=sum( v(shallow.iname(ik)).*shallow.coef(ik) );
    end;
    v=v(ju);
    f=ones(size(v));
    u=zeros(size(v));
  end;
end;


⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -