📄 improvedranpropylene.asv
字号:
2624.65
2539.05
2538.82
2551.21
2581.73
2560.04
2551.21
2502.10
2508.06
2495.90
2504.96
2514.50
2520.70
2520.70
2502.10
2514.50
2495.90
2538.82
2508.30
2501.86
2474.44
2425.56
2388.61
2413.41
2398.15
2379.79
2351.89
2343.07
2318.28
2318.28
2312.08
2391.95
2391.71
2376.69
2345.93
2349.03
2330.91
2315.18
2312.31
2290.86
2354.99
2413.41
2407.21
2391.71
2407.21
2401.01
2379.79
2343.07
2343.07
2343.07
2324.47
2330.43
2305.88
2318.28
2287.76
2303.02
2336.63
2324.71
2297.06
2318.04
2300.16
2293.96
2297.06
2284.66
2287.76
2293.96
2290.86
2293.72
2281.32
2254.14
2275.36
2281.80
2275.36
2278.94
2303.02
2263.20
2266.06
2223.62
2232.44
2257.24
2241.74
2257.24
2281.56
2260.10
2266.06
2284.42
2305.88
2308.98
2312.08
2318.04
2330.43
2305.88
2388.85
2398.15
2452.98
2440.82
2465.14
2514.26
]';
[pn,meanp,stdp,tn,meant,stdt]=prestd(p,t); %生成均值为0,方差为一的矩阵
[ptrans,transMat] = prepca(pn,0.01) ;%需调整的参数-2;主元分析
Tn=(t-min(t))/(max(t)-min(t));
[s,l]=size(ptrans);
ptrans=(ptrans-repmat(min(ptrans')',1,l))./repmat(max(ptrans')'-min(ptrans')',1,l); % 矩阵归一化
p1=ptrans(:,1:300);
p2=ptrans(:,301:396);
t1=Tn(:,1:300);
t2=Tn(:,301:396);
[InDim,TrainSamNum]=size(p1);
[OutDim,TrainSamNum]=size(t1);
[InDim,TestSamNum]=size(p2);
TrainSamNum; %训练样本数
TestSamNum; %测试样本数
InDim; %样本输入维数
OutDim; %样本输出维数
%根据目标函数获取样本输入输出
TestSTD=std(t2); % std(x),x为向量,std表示x方差的无偏估计平方根
OverLapCoe=0.8; %重叠系数
Dist_Max=1.5; %最大距离分辨率
Dist_Min=0.11; %最小距离分辨率
ErrLimit=0.02; %误差分辨率
Decay=0.977; %分辨率衰减常数
lr=0.05; %学习率
MaxEpoch=100; %最大学习次数
DistLimit=Dist_Max; %距离分辨率
b2=t1(:,1);
w2=[];
UnitCenters=[];
SpreadConstant=[];
UnitNum=0;
AllUnitNum=0;
AllTestRSME=[];
tp=[ErrLimit lr MaxEpoch];
for TrainedNum=2:TrainSamNum
NewInput=p1(:,TrainedNum);
NewOutput=t1(:,TrainedNum);
NetOut=RBFNN(NewInput,UnitCenters,w2,b2,SpreadConstant);
NewErr=NewOutput-NetOut;
if (UnitNum==0),
NewDist=Dist_Max;
else
AllDist=dist(UnitCenters',NewInput);
NewDist=min(AllDist);
end
if(norm(NewErr)>=ErrLimit & NewDist>=DistLimit), %判断是否添加隐节点
[UnitCenters,w2,SpreadConstant]=AddNewUnit(NewInput,NewErr,NewDist,UnitCenters,w2,SpreadConstant,OverLapCoe);
TrainedNum;
UnitNum=UnitNum+1;
else
[UnitCenters,w2,b2]=FineTuning(NewInput,NewOutput,UnitCenters,w2,b2,SpreadConstant,tp); % 参数精调的每一次迭代都是一个样本进入
end
if DistLimit>Dist_Min, %分辨率衰减
DistLimit=DistLimit*Decay;
else
DistLimit=Dist_Min;
end
AllUnitNum=[AllUnitNum UnitNum];
TestNNOut=RBFNN(p2,UnitCenters,w2,b2,SpreadConstant);
TestRSME=sqrt(sumsqr(TestNNOut-t2)/TestSamNum)/TestSTD;
AllTestRSME=[AllTestRSME TestRSME];
end
%绘制目标曲线和神经网络输出曲线
TestNNOut=RBFNN(p2,UnitCenters,w2,b2,SpreadConstant);
[xxx,PtNum]=size(t2); %此处的PtNum=201
figure
echo off %turns off echoing.
axis([0 PtNum 0 1])
axis on %turns axis labeling, tick marks and background back on.
%grid
plot(1:PtNum,t2,'*-')
hold on
plot(1:PtNum,TestNNOut,'r.-')
legend('Sample Outputs','RAN')
xlabel('样本数')
ylabel('归一化丙烷含量')
UnitNum
TestRSME
%绘制隐节点变化曲线
[xxx,PtNum]=size(AllUnitNum); %此处的PtNum=400
figure
echo off
axis([0 PtNum 0 150])
axis on
grid
hold on
plot(1:PtNum,AllUnitNum,'b-')
xlabel('隐节点变化曲线')
%绘制RSME变化曲线
[xxx,PtNum]=size(AllTestRSME); %此处的PtNum=399
figure
echo off
axis on
grid
hold on
plot(1:PtNum,AllTestRSME,'b-')
xlabel('RSME')
%w2
%b2
%UnitCenters
%SpreadConstant
%---------------------------------------------------------------------------------------------------------
% 下面是主函数中调用的函数,均以function定义,在主函数中没有function
%程序二段中调用的函数
% 隐层输出
function hiddenout=ho(p1,UnitCenters,SpreadConstant)
[xxx,InNum]=size(p1);
SpreadMat=repmat(SpreadConstant,1,InNum);
AllDist=dist(UnitCenters',p1);
hiddenout=radbas(AllDist./SpreadMat);
% 寻找需要合并的隐节点
function [hiddenunit1,hiddenunit2]=findunittocombine(hiddencorr,hiddenvar,...
unitscombinethreshold,biascombinethreshold)
corrtri=triu(hiddencorr)-eye(size(hiddencorr)); % TRIU Extract upper triangular part
while(1)
[val,pos]=max(abs(corrtri)); % [Y,I] = MAX(X) returns the indices of the maximum values in vector I and the maximum values in Y of X
[maxcorr,hiddenunit2]=max(val); %对于行向量X,[c,d]=max(X),返回c,d分别表示X中最大的数及其对应X的index
if(maxcorr<unitscombinethreshold)
hiddenunit1=0;hiddenunit2=0;
break % 用以退出while循环
end
hiddenunit1=pos(hiddenunit2); % 如果该语句执行则说明maxcorr>unitscombinethreshold,if段没有执行
if(hiddenvar(hiddenunit1)>biascombinethreshold &...
hiddenvar(hiddenunit2)>biascombinethreshold)
break
else
corrtri(hiddenunit1,hiddenunit2)=0;
end
end
if(hiddenunit1>0)return;end % return与break不同,用以退出本函数
[minvar,unit]=min(hiddenvar);
if(minvar<biascombinethreshold)
hiddenunit1=unit;
hiddenunit2=0;
end
% 线性回归
function [a,b]=linearreg(vect1,vect2)
[xxx,n]=size(vect1);
meanv1=mean(vect1);
meanv2=mean(vect2);
a=(vect1*vect2'/n-meanv1*meanv2)/(vect1*vect1'/n-meanv1^2);
b=meanv2-a*meanv1;
% 绘制两相关隐节点对所有样本的输出
function drawcorrelatedunitsout(unitout1,unitout2)
[xxx,ptnum]=size(unitout1);
figure
echo off
axis([0 ptnum 0 1])
axis on
grid
hold on
plot(1:ptnum,unitout1,'b-')
plot(1:ptnum,unitout2,'k-')
% 两个隐节点合并
function [UnitCenters,SpreadConstant,w2ex]=combinetwounits(hiddenunit1,hiddenunit2,a,b,w2ex,UnitCenters,SpreadConstant)
[xxx,biascol]=size(w2ex); % biascol=h1num+1,
w2ex(:,hiddenunit1)=w2ex(:,hiddenunit1)+a*w2ex(:,hiddenunit2); % 节点unit1与下一层节点的连接权矢量
w2ex(:,biascol)=w2ex(:,biascol)+b*w2ex(:,hiddenunit2); % 偏移权矢量更新
UnitCenters(:,hiddenunit2)=[];
SpreadConstant(hiddenunit2,:)=[];
w2ex(:,hiddenunit2)=[]; % 删除隐节点unit2 % unit2与下一层的连接权值矢量
% 绘制标准差较小的单个隐节点输出
function drawbiasedunitout(unitout)
[xxx,ptnum]=size(unitout);
figure('position',[300 300 400 300])
echo off
axis([0 ptnum 0 1])
axis on
grid
hold on
plot(1:ptnum,unitout,'k-')
% 将隐节点合并到偏移
function [UnitCenters,SpreadConstant,w2ex]=combineunittobias(hiddenunit1,unitmean,w2ex,UnitCenters,SpreadConstant)
[xxx,biascol]=size(w2ex);
w2ex(:,biascol)=w2ex(:,biascol)+unitmean*w2ex(:,hiddenunit1);
w2ex(:,hiddenunit1)=[];
UnitCenters(:,hiddenunit1)=[];
SpreadConstant(hiddenunit1,:)=[];
toc
% ----------------------------------------------------------------------------------------
% 程序一段中调用的函数
%网络输出函数
function NetOut=RBFNN(NewInput,UnitCenters,w2,b2,SpreadConstant)
[OutDim,UnitNum]=size(w2);
[xxx,InNum]=size(NewInput);
if(UnitNum==0),
NetOut=repmat(b2,1,InNum);
else
SpreadMat=repmat(SpreadConstant,1,InNum);
AllDist=dist(UnitCenters',NewInput);
al=radbas(AllDist./SpreadMat);
NetOut=w2*al+b2;
end
%增加新的隐节点
function[UnitCenters,w2,SpreadConstant]=AddNewUnit(NewInput,NewErr,NewDist,UnitCenters,w2,SpreadConstant,OverLapCoe)
UnitCenters=[UnitCenters NewInput];
w2=[w2 NewErr];
SpreadConstant=[SpreadConstant;OverLapCoe*NewDist];
%梯度法实现参数精调
function[UnitCenters,w2,b2]=FineTuning(NewInput,NewOutput,UnitCenters,w2,b2,SpreadConstant,tp)
[xxx,UnitNum]=size(UnitCenters);
if(UnitNum==0),b2=NewOutput;return,end
ErrLimit=tp(1); %即tp的第一个值
lr=tp(2);
MaxEpoch=tp(3);
for epoch=1:MaxEpoch
AllDist=dist(UnitCenters',NewInput);
al=radbas(AllDist./SpreadConstant); %radbas(n)=exp(-n^2),隐层输出
NetOut=w2*al+b2;
NewErr=NewOutput-NetOut;
if(norm(NewErr)<ErrLimit),break,end
b2=b2+lr*NewErr;
w2=w2+lr*NewErr*al';
for i=1:UnitNum
CentInc=2*(NewInput-UnitCenters(:,i))*al(i)*NewErr*w2(i)/(SpreadConstant(i)^2);
UnitCenters(:,i)=UnitCenters(:,i)+lr*CentInc;
end
end
% 在给定坐标范围内画格子: axis([xmin xmax ymin ymax]);grid on (与本程序无干)
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -