📄 resample.cpp
字号:
//-----------------------------------------------------------------------------
//
// Monogram AMR Encoder
//
// Base on the 3GPP source codes for AMR
//
// Author : Igor Janos
//
//-----------------------------------------------------------------------------
#include "stdafx.h"
#define _USE_MATH_DEFINES
#include <math.h>
//-------------------------------------------------------------------------
//
// Resample class
//
// dokaze resamplovat 16-bitove audio data
//
//-------------------------------------------------------------------------
/**
* 0th order modified bessel function of the first kind.
*/
static double bessel(double x)
{
double v=1;
double t=1;
int i;
for(i=1; i<50; i++){
t *= i;
v += pow(x*x/4, i)/(t*t);
}
return v;
}
static inline int lrintf(float f)
{
f += (3<<22);
return *((int*)&f) - 0x4b400000;
}
#define MAX(a,b) ((a)>(b)?(a):(b))
#define MIN(a,b) ((a)<(b)?(a):(b))
inline int clip(int a,int b,int c)
{
return (MIN(MAX(a,b), c));
}
/**
* builds a polyphase filterbank.
* @param factor resampling factor
* @param scale wanted sum of coefficients for each filter
* @param type 0->cubic, 1->blackman nuttall windowed sinc, 2->kaiser windowed sinc beta=16
*/
void build_filter(FELEM *filter, double factor, int tap_count, int phase_count, int scale, int type)
{
int ph, i, v;
double x, y, w;
double *tab=(double*)malloc(tap_count*sizeof(double));
const int center= (tap_count-1)/2;
/* if upsampling, only need to interpolate, no filter */
if (factor > 1.0) factor = 1.0;
for (ph=0; ph<phase_count; ph++) {
double norm = 0;
double e= 0;
for (i=0; i<tap_count; i++) {
x = M_PI * ((double)(i - center) - (double)ph / phase_count) * factor;
if (x == 0) y = 1.0; else y = sin(x) / x;
switch(type){
case 0:
{
const float d= -0.5; //first order derivative = -0.5
x = fabs(((double)(i - center) - (double)ph / phase_count) * factor);
if (x<1.0) {
y= 1 - 3*x*x + 2*x*x*x + d*( -x*x + x*x*x);
} else {
y= d*(-4 + 8*x - 5*x*x + x*x*x);
}
}
break;
case 1:
{
w = 2.0*x / (factor*tap_count) + M_PI;
y *= 0.3635819 - 0.4891775 * cos(w) + 0.1365995 * cos(2*w) - 0.0106411 * cos(3*w);
}
break;
case 2:
{
w = 2.0*x / (factor*tap_count*M_PI);
y *= bessel(16*sqrt(MAX(1-w*w, 0)));
}
break;
}
tab[i] = y;
norm += y;
}
/* normalize so that an uniform color remains the same */
for (i=0; i<tap_count; i++) {
v = clip(lrintf(tab[i] * scale / norm + e), FELEM_MIN, FELEM_MAX);
filter[ph * tap_count + i] = v;
e += tab[i] * scale / norm - v;
}
}
free(tab);
}
Resample::Resample()
{
memset(temp, 0, sizeof(temp));
temp_len = 0;
filter_bank = NULL;
}
Resample::~Resample()
{
Close();
}
void Resample::Close()
{
int i;
for (i=0; i<6; i++) {
if (temp[i]) free(temp[i]);
}
memset(temp, 0, sizeof(temp));
temp_len=0;
if (filter_bank) {
free(filter_bank);
filter_bank = NULL;
}
}
int Resample::Open(int channels, int input_rate, int output_rate)
{
// oba dame rovnake
input_channels = channels;
output_channels = channels;
filter_channels = channels;
ratio = (float)output_rate / (float)input_rate;
int filter_size = 16;
// cutoff
double cutoff = 1.0;
double factor = MIN(output_rate * cutoff / input_rate, 1.0);
phase_shift = 10;
int phase_count = 1 << phase_shift;
phase_mask = phase_count-1;
linear = 0.0;
filter_length = max( (int)ceil(filter_size/factor), 1);
int fb_size = filter_length * (phase_count+1);
filter_bank = (FELEM*)malloc(fb_size*sizeof(FELEM));
memset(filter_bank, 0, fb_size*sizeof(FELEM));
// build filter
build_filter(filter_bank, factor, filter_length, phase_count, 1<<FILTER_SHIFT, 1);
memcpy(&filter_bank[(filter_length*phase_count)+1], filter_bank, (filter_length-1)*sizeof(FELEM));
filter_bank[filter_length*phase_count]= filter_bank[filter_length - 1];
src_incr = output_rate;
ideal_dst_incr = dst_incr = input_rate*phase_count;
index = -phase_count*((filter_length-1)/2);
return 0;
}
int do_resample(Resample *c, short *dst, short *src, int *consumed, int src_size, int dst_size, int update_ctx)
{
int dst_index, i;
int index = c->index;
int frac = c->frac;
int dst_incr_frac = c->dst_incr % c->src_incr;
int dst_incr = c->dst_incr / c->src_incr;
int compensation_distance = c->compensation_distance;
if (compensation_distance == 0 && c->filter_length == 1 && c->phase_shift==0) {
int64 index2= ((int64)index)<<32;
int64 incr= (((int64)1)<<32) * c->dst_incr / c->src_incr;
dst_size= FFMIN(dst_size, (src_size-1-index) * (int64)c->src_incr / c->dst_incr);
for (dst_index=0; dst_index < dst_size; dst_index++) {
dst[dst_index] = src[index2>>32];
index2 += incr;
}
frac += dst_index * dst_incr_frac;
index += dst_index * dst_incr;
index += frac / c->src_incr;
frac %= c->src_incr;
} else {
for (dst_index=0; dst_index < dst_size; dst_index++) {
FELEM *filter= c->filter_bank + c->filter_length*(index & c->phase_mask);
int sample_index= index >> c->phase_shift;
FELEM2 val=0;
if (sample_index < 0) {
for (i=0; i<c->filter_length; i++) val += src[abs(sample_index + i) % src_size] * filter[i];
} else
if (sample_index + c->filter_length > src_size) { break; } else
if (c->linear) {
int64 v=0;
int sub_phase= (frac<<8) / c->src_incr;
for (i=0; i<c->filter_length; i++) {
int64 coeff = filter[i]*(256 - sub_phase) + filter[i + c->filter_length]*sub_phase;
v += src[sample_index + i] * coeff;
}
val= v>>8;
} else {
for (i=0; i<c->filter_length; i++) {
val += src[sample_index + i] * (FELEM2)filter[i];
}
}
val = (val + (1<<(FILTER_SHIFT-1)))>>FILTER_SHIFT;
dst[dst_index] = (unsigned)(val + 32768) > 65535 ? (val>>31) ^ 32767 : val;
frac += dst_incr_frac;
index += dst_incr;
if (frac >= c->src_incr) {
frac -= c->src_incr;
index++;
}
if (dst_index + 1 == compensation_distance) {
compensation_distance = 0;
dst_incr_frac = c->ideal_dst_incr % c->src_incr;
dst_incr = c->ideal_dst_incr / c->src_incr;
}
}
}
*consumed = MAX(index, 0) >> c->phase_shift;
if (index>=0) index &= c->phase_mask;
if (compensation_distance) compensation_distance -= dst_index;
if (update_ctx) {
c->frac = frac;
c->index = index;
c->dst_incr = dst_incr_frac + c->src_incr*dst_incr;
c->compensation_distance= compensation_distance;
}
return dst_index;
}
// resamplovanie
int Resample::Process(int16 *output[6], int16 *input[6], int nb_samples)
{
/*
Nase resamplovanie berie do uvahy iba zmenu sampleratu a nie
poctu kanalov. Vystupne data budu nemultiplexovane a caller
musi naalokovat dostatok dat, aby metoda
mala kam pisat.
*/
int16 *bufin[6];
int16 *bufout[6];
int16 *buftmp2[6];
int nb_samples1, i, lenout;
// ak neni co robit...
if (ratio == 1.0) {
// len skopirujeme
for (i=0; i<filter_channels; i++) {
memcpy(output[i], input[i], nb_samples * sizeof(int16) );
}
return nb_samples;
}
// TODO: prehodime mallocy do initu
for (i=0; i<filter_channels; i++) {
bufout[i] = output[i];
bufin[i] = (int16*)malloc( (nb_samples + temp_len) * sizeof(int16) );
buftmp2[i] = bufin[i] + temp_len;
// natlacime tam data
memcpy(bufin[i], temp[i], temp_len * sizeof(int16) );
memcpy(buftmp2[i], input[i], nb_samples * sizeof(int16) );
}
lenout = (int)(nb_samples * ratio) + 16;
nb_samples += temp_len;
// resamplujeme kazdy kanal
nb_samples1 = 0;
for (i=0; i<filter_channels; i++) {
int consumed=0;
int is_last = (i+1 == filter_channels);
// resamplujeme
nb_samples1 = do_resample(this, bufout[i], bufin[i], &consumed, nb_samples, lenout, is_last);
temp_len = nb_samples - consumed;
temp[i] = (int16*)realloc(temp[i], temp_len*sizeof(int16));
memcpy(temp[i], bufin[i] + consumed, temp_len*sizeof(int16));
}
// zrusime data
for (i=0; i<filter_channels; i++) {
free(bufin[i]);
}
return nb_samples1;
}
void Resample::Compensate(int sample_delta, int comp_distance)
{
compensation_distance = comp_distance;
dst_incr = ideal_dst_incr - ideal_dst_incr * (int64)sample_delta / comp_distance;
}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -